The ligand/quantum dots (QDs) ratio is crucial for the liquid state ligand exchange process to ensure a high-quality surface passivation and stable QDs ink. Herein we report an electrochemical method to investigate the ligand exchanged PbS-PbI QDs. It is found that the shell and core Pb(II) are distinguished by their reduction peak position in the cyclic voltammogram and the peak charge ratio gives the shell/core composition of the QDs. Combined with XPS analysis and UV-vis spectroscopy, it is further indicated that the shell/core ratio of PbS-PbI QDs varies as the ligand PbI concentration changes. Specifically, below a certain concentration, more PbI binds to the QD surface, leading to better passivation when the PbI concentration increases; however, beyond that concentration, decomposition of QDs likely occurs via an anion exchange process. The presented electrochemical method provides a new and powerful tool to investigate and optimize QD surface chemistry for boosting the scale up applications of QD devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c03423DOI Listing

Publication Analysis

Top Keywords

ligand exchange
8
exchange process
8
electrochemical method
8
pbs-pbi qds
8
pbi concentration
8
qds
6
probing dynamics
4
dynamics leadii
4
leadii sulfide
4
sulfide quantum
4

Similar Publications

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

Quantum dots (QDs) are promising materials for optoelectronic applications, but their widespread adoption requires controllable, selective, and scalable deposition methods. While traditional methods like spin coating and drop casting are suitable for small-scale deposition onto flat substrates, and ink-jet printing offers precision for small areas, these methods struggle with conformal deposition onto non-planar, large area substrates or selective deposition onto large area chips. Electrophoretic deposition (EPD) is an efficient and versatile technique capable of achieving conformal and selective area deposition over large areas, but its application to QD films has been limited.

View Article and Find Full Text PDF

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

We introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!