A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. | LitMetric

Purpose: Velocity-selective arterial spin labeling (VSASL) has been proposed for renal perfusion imaging to mitigate planning challenges and effects of arterial transit time (ATT) uncertainties. In VSASL, label generation may shift in the vascular tree as a function of cutoff velocity. Here, we investigate label dynamics and especially the ATT of renal VSASL and compared it with a spatially selective pulsed arterial spin labeling technique, flow alternating inversion recovery (FAIR).

Methods: Arterial spin labeling data were acquired in 7 subjects, using free-breathing dual VSASL and FAIR with five postlabeling delays: 400, 800, 1200, 2000, and 2600 ms. The VSASL measurements were acquired with cutoff velocities of 5, 10, and 15 cm/s, with anterior-posterior velocity-encoding direction. Cortical perfusion-weighted signal, temporal SNR, quantified renal blood flow, and arterial transit time were reported.

Results: In contrast to FAIR, renal VSASL already showed fairly high signal at the earliest postlabeling delays, for all cutoff velocities. The highest VSASL signal and temporal SNR was obtained with a cutoff velocity of 10 cm/s at postlabeling delay = 800 ms, which was earlier than for FAIR at 1200 ms. Fitted ATT on VSASL was ≤ 0 ms, indicating ATT insensitivity, which was shorter than for FAIR (189 ± 79 ms, P < .05). Finally, the average cortical renal blood flow measured with cutoff velocities of 5 cm/s (398 ± 84 mL/min/100 g) and 10 cm/s (472 ± 160 mL/min/100 g) were similar to renal blood flow measured with FAIR (441 ± 84 mL/min/100 g) (P > .05) with good correlations on subject level.

Conclusion: Velocity-selective arterial spin labeling in the kidney reduces ATT sensitivity compared with the recommended pulsed arterial spin labeling method, as well as if cutoff velocity is increased to reduce spurious labeling due to motion. Thus, VSASL has potential as a method for time-efficient, single-time-point, free-breathing renal perfusion measurements, despite lower tSNR than FAIR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048977PMC
http://dx.doi.org/10.1002/mrm.28683DOI Listing

Publication Analysis

Top Keywords

arterial spin
24
spin labeling
24
velocity-selective arterial
12
cutoff velocity
12
cutoff velocities
12
renal blood
12
blood flow
12
vsasl
9
label dynamics
8
arterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!