Single-atom catalysts (SAs) with the maximum atom utilization and breakthrough activities toward hydrogen evolution reaction (HER) have attracted considerable research interests. Uncovering the nature of single-atom metal centers under operating electrochemical condition is highly significant for improving their catalytic performance, yet is poorly understood in most studies. Herein, Pt single atoms anchoring on the nitrogen-carbon substrate (Pt /N-C) as a model system are utilized to investigate the dynamic structure of Pt single-atom centers during the HER process. Via in situ/operando synchrotron X-ray absorption spectroscopy and X-ray photoelectron spectroscopy, an intriguing structural reconstruction at atomic level is identified in the Pt /N-C when it is subjected to the repetitive linear sweep voltammetry and cyclic voltammetry scanning. It demonstrates that the PtN bonding tends to be weakened under cathodic potentials, which induces some Pt single atoms to dynamically aggregate into forming small clusters during the HER reaction. More importantly, experimental evidence and/or indicator is offered to correlate the observed Tafel slope with the dynamic structure of Pt catalysts. This work provides an evident understanding of SAs under electrocatalytic process and offers informative insights into constructing efficient catalysts at atomic level for electrochemical water-splitting system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202005713 | DOI Listing |
Mater Horiz
January 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFSmall
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.
Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
Globin X is a newly discovered member of the globin family, while its structure and function are not fully understood. In this study, we performed protein modelling studies using Alphafold3 and molecular dynamics simulations, which suggested that the protein adopts a typical globin fold, with the formation of a potential disulfide bond of Cys65 and Cys141. To elucidate the role of this unique disulfide in protein structure and stability, we constructed a double mutant of C65S/C141S by mutating the two cysteine residues to serine.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.
View Article and Find Full Text PDFElife
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!