A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pseudosolvent Intercalator of Chitin: Self-Exfoliating into Sub-1 nm Thick Nanofibrils for Multifunctional Chitinous Materials. | LitMetric

Pseudosolvent Intercalator of Chitin: Self-Exfoliating into Sub-1 nm Thick Nanofibrils for Multifunctional Chitinous Materials.

Adv Mater

Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China.

Published: March 2021

Traditionally, energy-intensive and time-consuming postmechanical disintegration processes are inevitable in extracting biopolymer nanofibrils from natural materials and thereby hinder their practical applications. Herein, a new, convenient, scalable, and energy-efficient method for exfoliating nanofibrils (ChNFs) from various chitin sources via pseudosolvent-assisted intercalation process is proposed. These self-exfoliated ChNFs possess controllable thickness from 2.2 to 0.8 nm, average diameter of 4-5 nm, high aspect ratio up to 10 and customized surface chemistries. Particularly, compared with elementary nanofibrils, ChNFs with few molecular layers thick exhibit greater potential to construct high-performance structural materials, e.g., ductile nanopapers with large elongation up to 70.1% and toughness as high as 30.2 MJ m , as well as soft hydrogels with typical nonlinear elasticity mimicking that of human-skin. The proposed self-exfoliation concept with unique advantages in the combination of high yield, energy efficiency, scalable productivity, less equipment requirements, and mild conditions opens up a door to extract biopolymer nanofibrils on an industrial scale. Moreover, the present modular ChNFs exfoliation will facilitate researchers to study the effect of thickness on the properties of nanofibrils and provide more insight into the structure-function relationship of biopolymer-based materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202007596DOI Listing

Publication Analysis

Top Keywords

biopolymer nanofibrils
8
nanofibrils chnfs
8
nanofibrils
6
pseudosolvent intercalator
4
intercalator chitin
4
chitin self-exfoliating
4
self-exfoliating sub-1 nm
4
sub-1 nm thick
4
thick nanofibrils
4
nanofibrils multifunctional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!