Bethlem myopathy (BM) is an autosomal dominant or autosomal recessive disorder and is usually associated with mutations in the collagen VI genes. In the present study, the pathogenicity of a novel splice‑site mutation was explored using RNA‑sequencing in a family with suspected BM, and a myopathy panel was performed in the proband. The genetic status of all family members was confirmed using Sanger sequencing. Clinical data and magnetic resonance imaging (MRI) features were also documented. analysis was performed to predict the effects of the splice mutation. RNA‑sequencing and reverse transcription (RT)‑PCR were used to assess aberrant splicing. Immunocytochemistry was conducted to measure collagen VI protein levels within the gastrocnemius and in cultured skin fibroblasts. The results revealed that three patients in the family shared a similar classic BM presentation. MRI revealed distinct patterns of fatty infiltration in the lower extremities. A novel splicing mutation c.736‑1G>C in the collagen α‑2 (VI) chain () gene was found in all three patients. analysis predicted that the mutation would destroy the normal splice acceptor site. RNA‑sequencing detected two abnormal splicing variants adjacent to the mutation site, and RT‑PCR confirmed the RNA‑sequencing findings. Furthermore, a defect in the collagen protein within cultured fibroblasts was detected using immunocytochemistry. The mutation c.736‑1G>C in the gene caused aberrant splicing and led to premature termination of protein translation. In conclusion, these findings may improve our knowledge of mutations of the gene associated with BM and demonstrated that RNA‑sequencing can be a powerful tool for finding the underlying mechanism of a disease‑causing mutations at a splice site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895517PMC
http://dx.doi.org/10.3892/ijmm.2021.4861DOI Listing

Publication Analysis

Top Keywords

α‑2 chain
8
chain gene
8
bethlem myopathy
8
aberrant splicing
8
collagen protein
8
three patients
8
mutation c736‑1g>c
8
rna‑sequencing
6
mutation
6
rna‑sequencing detect
4

Similar Publications

The time course and organization of hippocampal replay.

Science

January 2025

Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.

The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.

View Article and Find Full Text PDF

Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists' economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China.

View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.

View Article and Find Full Text PDF

The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the ABA triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the ABA triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the ABCA tetrablock copolymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!