Background: Methods for identifying gene fusion events, such as fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and transcriptome analysis, are either single gene approaches or require bioinformatics expertise not generally available in clinical laboratories. We analytically validated a customized next-generation sequencing (NGS) panel targeting fusion events in 34 genes involving soft-tissue sarcomas.

Methods: Specimens included 87 formalin-fixed paraffin-embedded (FFPE) tissues with known gene fusion status. Isolated total nucleic acid was used to identify fusion events at the RNA level. The potential fusions were targeted by gene-specific primers, followed by primer extension and nested PCR to enrich for fusion candidates with subsequent bioinformatics analysis.

Results: The study generated results using the following quality metrics for fusion detection: (a) ≥100 ng total nucleic acid, (b) RNA average unique start sites per gene-specific primer control ≥10, (c) quantitative PCR assessing input RNA quality had a crossing point <30, (d) total RNA percentage ≥30%, and (e) total sequencing fragments ≥500 000.

Conclusions: The test validation study demonstrated analytical sensitivity of 98.7% and analytical specificity of 90.0%. The NGS-based panel generated highly concordant results compared to alternative testing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jalm/jfaa230DOI Listing

Publication Analysis

Top Keywords

gene fusion
12
fusion events
12
next-generation sequencing
8
total nucleic
8
nucleic acid
8
fusion
6
gene
4
fusion identification
4
identification anchor-based
4
anchor-based multiplex
4

Similar Publications

Drp1-associated genes implicated in sepsis survival.

Front Immunol

January 2025

Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States.

Sepsis is a severe and life-threatening medical syndrome that can lead to organ failure and death. Despite advances in medical treatment, current therapies are often inadequate, with high septic mortality rates. Therefore, there is a critical need for reliable prognostic markers to be used in clinical settings to improve the management and outcomes of patients with sepsis.

View Article and Find Full Text PDF

Angiomatoid fibrous histiocytoma (AFH) is a rare soft tissue tumor with intermediate malignant potential, and it rarely metastasizes. We encountered a unique AFH case where, the tumor was discovered initially in unusual locations-the left lung and the left 4th rib. Combined histological features with FISH and NGS analysis, the diagnosis of AFH was supported, however, it is difficult to determine which of these two is the primary lesion.

View Article and Find Full Text PDF

PRMT1-methylated MSX1 phase separates to control palate development.

Nat Commun

January 2025

State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.

Little is known about the regulation and function of phase separation in craniofacial developmental disorders. MSX1 mutations are associated with human cleft palate, the most common craniofacial birth defect. Here, we show that MSX1 phase separation is a vertebrate-conserved mechanism underlying embryonic palatal fusion.

View Article and Find Full Text PDF

BCR::ABL1-like B-lymphoblastic leukaemia (B-ALL) neoplasms lack the BCR::ABL1 translocation but have a gene expression profile like BCR::ABL1 positive B-ALL. This includes alterations in cytokine receptors and signalling genes, such as and Cases with CRLF2 rearrangements account for approximately 50% of cases of Philadelphia-like acute lymphoblastic leukaemia (Ph-like ALL), and the frequency of specific genomic lesions varies with ethnicity such that IGH::CRLF2 translocations are more common in Hispanics and Native Americans.We report two cases of BCR::ABL1-like ALL, with significant eosinophilia.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!