Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A combination of chemotherapy and targeted magnetic hyperthermia (TMH) via a designed magnetic nanocrystal (MNC) drug delivery system was considered as an effective tumor synergistic therapy strategy. In this paper, we successfully synthesized tumor neovascular-targeted Mn-Zn ferrite MNCs, which encapsulated paclitaxel (PTX) in a biocompatible PEG-phospholipid (DSPE-PEG2000) layer and surface, simultaneously coupled with a tripeptide of arginine-glycine-aspartic acid (RGD). The high-performance RGD-modified MNC loaded with PTX (MNCs-PTX@RGD) embodied excellent magnetic properties, including high-contrast magnetic resonance imaging (MRI) and remarkable magnetically induced heat generation ability. We established the mouse model bearing subcutaneous 4T1 breast tumor, and demonstrated that MNCs-PTX@RGD could be effectively located in the tumor neovascular epithelial cells under the guidance of in vivo MRI. Notably, MNCs-PTX@RGD could easily penetrate into the tumor tissue from the tumor-fenestrated vascular networks for capturing a sufficient temperature (around 43 °C) exposed to an alternative current magnetic field (ACMF, 2.58 kA m, 390 kHz), leading to an effective TMH effect. Subsequently, the TMH-mediated temperature elevation accelerated the PTX release from the inner lipid layer, promoting the synergetic thermo-chemotherapy in vivo. The amplifying synergistic treatment strategy obviously improved the anti-tumor efficacy of MNCs-PTX@RGD, and simultaneously increased the survival time of the mice to more than 46 days, which provided a broad development prospect in clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr08197c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!