Purpose: Early diagnosis of sepsis-induced acute respiratory distress syndrome (ARDS) is critical for effective treatment. We aimed to identify early stage biomarkers.
Materials And Methods: Differentially expressed genes were identified in whole blood samples from patients with sepsis or ARDS based on the Gene Expression Omnibus (GEO) datasets GSE32707, GSE54514 and GSE10361. Functional enrichment analysis explored the biological characteristics of differentially expressed genes. Genes with high functional connectivity based on a protein-protein interaction network were marked as hub genes, which were validated using the GEO dataset GSE76293, and a gene set variation analysis index (GSVA) was assigned. Diagnostic and predictive ability of the hub genes were assessed by receiver operating characteristic (ROC) curve analysis. DNA methylation levels of hub genes were quantified using the GEO dataset GSE67530.
Results: Forty-one differentially expressed genes were shared between sepsis-specific and ARDS-specific datasets. MAP2K2 and IRF7 functional activity was highly connected in sepsis-induced ARDS. Hub genes included RETN, MVP, DEFA4, CTSG, AZU1, FMNL1, RBBP7, POLD4, RIN3, IRF7. ROC curve analysis of the hub gene GSVA index showed good diagnostic ability in sepsis or ARDS. Among genes related to sepsis-induced ARDS, 17 were differentially methylated. Principal component analysis and heatmaps indicated that gene methylation patterns differed significantly between ARDS patients and controls.
Conclusion: We identified a genetic profile specific to early-stage sepsis-induced ARDS. The abnormal expression of these genes may be caused by hypomethylation, which may serve as a biomarker for early diagnosis of ARDS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847772 | PMC |
http://dx.doi.org/10.2147/IJGM.S287960 | DOI Listing |
PLoS One
January 2025
Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China.
Aim: To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8).
Background: IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored.
Neuromolecular Med
December 2024
Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.
View Article and Find Full Text PDFFerroptosis, an iron-dependent form of programmed cell death driven by oxidative stress, plays a crucial role in the progression of Alzheimer's disease (AD). Aging diminishes antioxidant systems that maintain iron homeostasis, particularly affecting the glutathione peroxidase (GPX) system, leading to increased ferroptosis and exacerbated neurodegeneration and neuroinflammation in AD. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating genes involved in antioxidant defense and ferroptosis.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
This study aims to identify novel loci associated with sarcopenia-related traits in UK Biobank (UKB) through multi-trait genome-wide analysis. To identify novel loci associated with sarcopenia, we integrated the genome-wide association studies (GWAS) of usual walking pace (UWP) and hand grip strength (HGS) to conduct a joint association study known as multi-trait analysis of GWAS (MTAG). We performed a transcriptome-wide association study (TWAS) to analyze the results of MTAG in relation to mRNA expression data for genes identified in skeletal muscle.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany.
Background: MicroRNAs have been linked to dementia. However, understanding their relation to cognition in the general population is required to determine their potential use for the detection and prevention of age-associated cognitive decline and preclinical dementia. Therefore, we examined the association of circulating microRNAs with cognitive performance in a population-based cohort and the possible underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!