Learning is a behavioural change based on memory of previous experiences and a ubiquitous phenomenon in animals. Learning effects are commonly life-stage- and age-specific. In many animals, early life experiences lead to pervasive and persistent behavioural changes.There is broad consensus that learning has far-reaching implications to biological control. Proximate and ultimate factors of individual learning by parasitoids and true predators are relatively well understood, yet the consequences of learning to higher organizational levels, populations and communities, and top-down trophic cascades are unexplored.We addressed this issue using a tri-trophic system consisting of predatory mites , Western flower thrips and whole common bean plants, . are notorious horticultural pests that are difficult to control. Therefore, practitioners have much to gain by optimizing biological control of thrips.Previous studies have shown that early life experience of thrips by improves foraging on thrips later in life due to decreased prey recognition times and increased predation rates, together enhancing predator fecundity. Here, we hypothesized that early learning by enhances biological control of thrips via immediate and cascading effects. We predicted that release of thrips-experienced predators enhances predator population growth and thrips suppression and reduces plant damage as compared to release of thrips-naïve predators.The behavioural changes brought about by early learning cascaded up to the population and community levels. Thrips-experienced predators caused favourable immediate and cascading effects that could not be compensated for in populations founded by thrips-naïve predators. Populations founded by thrips-experienced predators grew faster, reached higher abundances, were more efficacious in suppressing an emerging thrips population and kept plant damage at lower levels than populations founded by thrips-naïve predators. Plant fecundity correlated negatively with thrips abundance and positively with predatory mite abundance. Improved biological control was mainly due to thrips-experienced founders providing for a head-start in predator population growth and thrips suppression. . Our study suggests that learned natural enemies have high potential to optimize augmentative biological control on a larger scale due to favourably modulating organizational upward and trophic top-down cascades.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839590 | PMC |
http://dx.doi.org/10.1111/1365-2664.13791 | DOI Listing |
Microbiome
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.
Background: Ulinastatin (UTI), recognized for its anti-inflammatory properties, holds promise for patients undergoing cardiac surgery. This study aimed to investigate the relationship between intraoperative UTI administration and the incidence of delirium following cardiac surgery.
Methods: A retrospective analysis was performed on a retrospective cohort of 6,522 adult cardiac surgery patients to evaluate the relationship between UTI treatment and the incident of postoperative delirium (POD) in patients ongoing cardiac surgery.
Biol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
The present study investigated the role of the neurotensin/NTS in the modulation of the lipopolysaccharide/LPS induced dysfunction of the sympatho-adrenal-medullary system/SAM using both the NTS receptor 1/NTSR agonist PD149163/PD and antagonist SR48692 /SR. Forty eight mice were maintained in eight groups; Group I/control, Groups II, III, IV, and VII received LPS for 5 days further Group III/IV/VII received PD low dose/PD, PD high dose /PD and SR for 28 days respectively. Group V/VI received similar only PD and PD dose respectively whereas Group VIII was exposed to only SR for 28 days.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry Univ, Fuzhou, China.
The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!