The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858598 | PMC |
http://dx.doi.org/10.1038/s41598-021-81999-7 | DOI Listing |
New Phytol
January 2025
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91011, USA.
A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.
Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan.
Patterns of disease and therapeutic responses vary widely among patients with autoimmune glomerulonephritis. This study introduces groundbreaking personalized infrared (IR)-based diagnostics for real-time monitoring of disease status and treatment responses in lupus nephritis (LN). We have established a relative absorption difference (RAD) equation to assess characteristic spectral indices based on the temporal peak heights (PHs) of two characteristic serum absorption bands: ν as the target signal and ν as the PH reference for the ν absorption band, measured at each dehydration time (t) during dehydration.
View Article and Find Full Text PDFGels
January 2025
Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
In the present work, the influence of the addition of graphene nanoplatelets presenting different dimensions on polyurethane-polyisocyanurate aerogel structure and properties has been studied. The obtained aerogels synthesized through a sol-gel method have been fully characterized in terms of density, porosity, specific surface area, mechanical stiffness, thermal conductivity, and speed of sound. Opacified aerogels showing high porosity (>92%) and low densities (78-98 kg/m) have been produced, and the effect of the size and content of graphene nanoplatelets has been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!