The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun's outflows to extragalatic jets. Furthermore, they provide a possible interpretation for the observed structuring of astrophysical jets. Jet modulation could be interpreted as the signature of changes over time in the outflow/ambient field angle, and the change in the direction of the jet could be the signature of changes in the direction of the ambient field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858631PMC
http://dx.doi.org/10.1038/s41467-021-20917-xDOI Listing

Publication Analysis

Top Keywords

astrophysical outflows
8
magnetic field
8
jet collimation
8
signature changes
8
jet
6
field
5
laboratory disruption
4
disruption scaled
4
scaled astrophysical
4
outflows misaligned
4

Similar Publications

Massive stars are predominantly born in stellar associations or clusters. Their radiation fields, stellar winds and supernovae strongly impact their local environment. In the first few million years of a cluster's life, massive stars are dynamically ejected and run away from the cluster at high speed.

View Article and Find Full Text PDF

A mega-electron volt emission line in the spectrum of a gamma-ray burst.

Science

July 2024

Osservatorio Astronomico di Brera, Istituto Nazionale di Astrofisica, Merate 23807, Italy.

A long gamma-ray burst (GRB) is observed when the collapse of a massive star produces an ultrarelativistic outflow pointed toward Earth. Gamma-ray spectra of long GRBs are smooth, typically modeled by joint power-law segments describing a continuum, with no detected spectral lines. We report a significant (>6σ) narrow emission feature at ~10 mega-electron volts (MeV) in the spectrum of the bright GRB 221009A.

View Article and Find Full Text PDF

Venus, lacking an intrinsic global dipole magnetic field, serves as a textbook example of an induced magnetosphere, formed by interplanetary magnetic fields (IMF) enveloping the planet. Yet, various aspects of its magnetospheric dynamics and planetary ion outflows are complex and not well understood. Here we analyze plasma and magnetic field data acquired during the fourth Venus flyby of the Parker Solar Probe (PSP) mission and show evidence for closed topology in the nightside and downstream portion of the Venus magnetosphere (i.

View Article and Find Full Text PDF

We present a new nucleosynthesis process that may take place on neutron-rich ejecta experiencing an intensive neutrino flux. The nucleosynthesis proceeds similarly to the standard r process, a sequence of neutron captures and beta decays with, however, charged-current neutrino absorption reactions on nuclei operating much faster than beta decays. Once neutron-capture reactions freeze out the produced r process, neutron-rich nuclei undergo a fast conversion of neutrons into protons and are pushed even beyond the β stability line, producing the neutron-deficient p nuclei.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent research suggests that supermassive black holes may suppress star formation in massive galaxies by driving large outflows, but concrete evidence has been scarce, especially in the young universe where star formation happens quickly.
  • - Although outflows of ionized gas are commonly observed, they don’t contain enough mass to hinder star formation, with more effective gas ejection expected in neutral and molecular phases that are only seen in more extreme conditions like starbursts and quasars.
  • - New spectroscopy from the JWST reveals a massive galaxy at a redshift of 2.445 undergoing rapid star formation suppression, detecting a significant outflow of neutral gas that should effectively halt star creation, indicating that supermassive black holes can rapidly quench
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!