Zoonotic pandemics, such as that caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can follow the spillover of animal viruses into highly susceptible human populations. The descendants of these viruses have adapted to the human host and evolved to evade immune pressure. Coronaviruses acquire substitutions more slowly than other RNA viruses. In the spike glycoprotein, we found that recurrent deletions overcome this slow substitution rate. Deletion variants arise in diverse genetic and geographic backgrounds, transmit efficiently, and are present in novel lineages, including those of current global concern. They frequently occupy recurrent deletion regions (RDRs), which map to defined antibody epitopes. Deletions in RDRs confer resistance to neutralizing antibodies. By altering stretches of amino acids, deletions appear to accelerate SARS-CoV-2 antigenic evolution and may, more generally, drive adaptive evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971772 | PMC |
http://dx.doi.org/10.1126/science.abf6950 | DOI Listing |
Medicine (Baltimore)
January 2025
Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin, Guangxi, China.
Rationale: This study investigates the genetic cause of primary infertility and short stature in a woman, focusing on maternal X chromosome pericentric inversion and its impact on offspring genetic outcomes, including deletions at Xp22.33 and Xp22.33p11.
View Article and Find Full Text PDFCase Reports Immunol
December 2024
Department of Medical Oncology and Hematology, Oncology Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, UAE.
X-linked moesin-associated immunodeficiency (X-MAID) is a recently identified combined immunodeficiency caused by a mutation in the moesin () gene. It is characterized by cytopenias, hypogammaglobulinemia, poor immune response to vaccine antigens, and increased susceptibility to early-life infections. We report a patient with adult-onset neutropenia, lymphopenia, inadequate response to the pneumococcal polysaccharide vaccine (PPSV23), and recurrent bacterial infections associated with a hemizygous deletion.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland.
Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).
Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
October 2025
Department of Pediatric Neurology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
Objective: To explore the clinical and genetic characteristics of two children diagnosed with two rare genetic diseases simultaneously.
Methods: Two children with comorbidity of two genetic diseases due to dual genetic mutations diagnosed at the Third Affiliated Hospital of Zhengzhou University respectively in May 2022 and March 2023 were selected as the study subjects. Clinical and genetic data of the two children were retrospectively analyzed.
J Med Genet
January 2025
Centres de référence Maladies Rares « Neurogénétique » et « Anomalies du développement », Medical Genetics Departement, CHU de Bordeaux, Bordeaux, France.
Background: loss of function manifests across a broad spectrum of phenotypes, ranging from severe prenatal onset to asymptomatic cases. Bilateral periventricular nodular heterotopia (BPNH) consistently occurs in affected individuals. This retrospective study involving French patients with BPNH evaluates the prevalence of gene dosage anomalies and investigates genotype-phenotype correlations in a large cohort of French patients with BPNH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!