Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy.

Sci Adv

State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Published: February 2021

PD-1/PD-L1 blockade therapies provide notable clinical benefits for patients with advanced cancers, but the factors influencing the effectiveness of the treatment remain incompletely cataloged. Here, the up-regulation of laminin γ2 (Ln-γ2) predicted the attenuated efficacy of anti-PD-1 drugs and was associated with unfavorable outcomes in patients with lung cancer or esophageal cancer. Furthermore, Ln-γ2 was transcriptionally activated by transforming growth factor-β1 (TGF-β1) secreted from cancer-associated fibroblasts via JNK/AP1 signaling, which blocked T cell infiltration into the tumor nests by altering the expression of T cell receptors. Coadministration of the TGF-β receptor inhibitor galunisertib and chemotherapy drugs provoked vigorous antitumor activity of anti-PD-1 therapy in mouse tumor models. Therefore, Ln-γ2 may represent a useful biomarker to optimize clinical decisions and predict the response of cancer patients to treatment with anti-PD-1 drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857690PMC
http://dx.doi.org/10.1126/sciadv.abc8346DOI Listing

Publication Analysis

Top Keywords

anti-pd-1 therapy
8
anti-pd-1 drugs
8
laminin γ2-mediating
4
γ2-mediating cell
4
cell exclusion
4
exclusion attenuates
4
attenuates response
4
anti-pd-1
4
response anti-pd-1
4
therapy pd-1/pd-l1
4

Similar Publications

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Background: Immune ageing complicates cancer treatment in older individuals. While immunotherapy targeting the PD-1/PD-L1 pathway can reinvigorate T cells, these cells tend to become senescent with age. This study investigates different CD8 T cell subsets usually associated with senescence, in cancer patients over 70 years old who are undergoing anti-PD-1/PD-L1 immunotherapy, and examines the relationship between these senescent cells and prior chemotherapy exposure.

View Article and Find Full Text PDF

A conserved pilin from uncultured gut bacterial clade TANB77 enhances cancer immunotherapy.

Nat Commun

December 2024

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.

Immune checkpoint blockade (ICB) has become a standard anti-cancer treatment, offering durable clinical benefits. However, the limited response rate of ICB necessitates biomarkers to predict and modulate the efficacy of the therapy. The gut microbiome's influence on ICB efficacy is of particular interest due to its modifiability through various interventions.

View Article and Find Full Text PDF

Dendritic cells (DCs) are specialized immune cells that play a crucial role in presenting antigens and activating cytotoxic T lymphocytes to combat tumors. The immune checkpoint receptor programmed cell death-1 (PD-1) can bind to its ligand programmed cell death-ligand 1 (PD-L1), which is expressed on the surface of cancer cells. This interaction suppresses T-cell activation and promotes immune tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • Insufficient interferon response in tumor cells limits the effectiveness of immune checkpoint blockade (ICB) therapy, particularly in anti-PD-1 treatment for microsatellite instability (MSI) colorectal cancer (CRC).
  • Through screening, the study identified mevalonate kinase (MVK) as a key negative regulator of this interferon response in MSI CRC cells, where its genetic removal led to better immune cell infiltration and tumor growth suppression in mice.
  • The research highlighted that lowered MVK expression in human tumor samples associates with improved responses to anti-PD-1 therapy, indicating that targeting MVK could enhance ICB therapy by boosting interferon signaling in MSI CRC patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!