Background: Protein tyrosine phosphatase 1B (PTP1B) is one of the major negative regulators of leptin and insulin signaling, and has been strongly implicated in insulin resistance development in the course of obesity and metabolic syndrome conditions; however, its exact role in controlling adipose tissue biogenesis is still poorly understood.
Objectives: This investigation aimed to elucidate whether selective inhibition of PTP1B using MSI-1436 compound may improve and restore the defective adipogenicity of ASCs isolated from EMS-affected horses.
Methods: Equine ASC EMS cells were cultured under adipogenic conditions in the presence of PTP1B inhibitor and were subsequently tested for expression of the main adipogenic-related genes using RT-qPCR, changes in free fatty acid profiles by means of GC-MS technique, and for mitochondrial dynamics improvement through the analysis of mitochondrial transmembrane potential and oxidative stress.
Results: Selective inhibition of PTP1B in equine ASC EMS cells improved substantially adipogenic differentiation by promoting cellular proliferation and normalizing expression of C/EBPalpha, PPARγ, and Adipoq markers that are critical for proper adipogenesis. Levels of secreted adiponectin and PPARγ were also shown to be increased in MSI-1436-conditioned cells, while total leptin levels markedly dropped under the same conditions. Moreover, MSI-1436 treatment enabled the regulation of metabolic-related transcripts that are crosslink to adipogenesis, namely Akt1, Akt2, and SHBG. The obtained results demonstrated also an obvious reduction in intracellular accumulated ROS and NO, as well as mitigated ER stress through the downregulation of Chop, Perk, Atf6, Ire1, and Xbp1 transcripts upon PTP1B inhibition. Furthermore, general fluctuations in FFA composition of all differentiated groups have been highlighted, where palmitic acid, palmitoleic acid, stearic acid, and linolelaidic acid that are known to be associated with the development of metabolic disorders were found to be normalized upon PTP1B inhibition during adipogenic differentiation.
Conclusion: The presented data provides the evidence that the use of PTP1B inhibitor may be successful in controlling and enhancing adipogenic differentiation of impaired equine ASCs affected by metabolic syndrome, and thus offers new insights for the management of obesity through the regulation of adipose tissue dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860037 | PMC |
http://dx.doi.org/10.1186/s13287-020-02102-x | DOI Listing |
Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Research Institute, Ballys Co. Ltd, Incheon, Republic of Korea.
Background/purpose: Pulp polyp is often eliminated as dental waste. Pulp polyp cells were reported to have high proliferation activity which might be comprised of stem cells. However, little has been known on the presence of stem cells in the pulp polyp.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Huizhou Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
Background: Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!