: Mutations in SCN5A that decrease Na current underlie arrhythmia syndromes such as the Brugada syndrome (BrS). in humans has two splice variants, one lacking a glutamine at position 1077 (Q1077del) and one containing Q1077. We investigated the effect of splice variant background on loss-of-function and rescue for R1512W, a mutation reported to cause BrS. : We made the mutation in both variants and expressed them in HEK-293 cells for voltage-clamp study. After 24 hours of transfection, the current expression level of R1512W was reduced by ~50% in both Q1077del and Q1077 compared to the wild-type (WT) channel, respectively. The activation and inactivation midpoint were not different between WT and mutant channels in both splice variant backgrounds. However, slower time constants of recovery and enhanced intermediate inactivation were observed for R1512W/Q1077 compared with WT-Q1077, while the recovery and intermediate inactivation parameters of R1512W/Q1077del were similar to WT-Q1077del. Furthermore, both mexiletine and the common polymorphism H558R restored peak sodium current () amplitude of the mutant channel by increasing the cell surface expression of SCN5A. : These findings provide further evidence that the splice variant affects the molecular phenotype with implications for the clinical phenotype, and they provide insight into the expression defect mechanisms and potential treatment in BrS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872018 | PMC |
http://dx.doi.org/10.1080/19336950.2021.1875645 | DOI Listing |
Sci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFKidney Int Rep
January 2025
Division of Pediatric Nephrology, Rosenheim Hospital, Germany.
Introduction: Newborn screening (NBS) programs for a defined set of eligible diseases have been enormously successful, but genomic NBS allowing for detection of additional treatable disorders has not been broadly implemented. All 3 types of primary hyperoxaluria (PH1-3) are rare autosomal recessive diseases caused by distinct defects of glyoxylate metabolism that are diagnosed genetically with certainty. Early diagnosis and treatment are mandatory to avoid renal failure or sequalae associated with persistent hyperoxaluria.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Department of Nephrology, Kidney Transplantation and Dialysis, CHU Lille, University of Lille, Lille, France.
Background And Hypothesis: Unlike X-linked or autosomal recessive Alport Syndrome, no clear genotype/phenotype correlation has yet been demonstrated in patients carrying a single variant of COL4A3 or COL4A4.
Methods: We carried out a multicenter retrospective study to assess the risk factors involved in renal survival in patients presenting a single pathogenic variant on COL4A3 or COL4A4.
Results: 97 patients presenting a single pathogenic variant of COL4A3 or COL4A4 were included.
Mol Ther Nucleic Acids
March 2025
Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA.
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.
Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!