Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We analyze how the changes in the dimension of carbon nanomaterial (CNM) affect their catalytic conversion of secondary aliphatic alcohols. Carbon nanotubes (CNTs) consolidated by spark plasma sintering (SPS) were inactive in the conversion of secondary C-C aliphatic alcohols because of the «healing» of defects in carbon structure during SPS. Gas-phase treatment of consolidated CNTs with HNO vapors led to their surface oxidation without destruction of the bulk structure of pellets. The oxygen content in consolidated CNTs determined by X-ray photoelectron spectroscopy increased from 11.3 to 14.9 at. % with increasing the oxidation time from 3 to 6 h. Despite the decrease in the specific surface area, the oxidized samples showed enhanced catalytic activity in alcohol conversion because of the increased number of oxygen radicals with unpaired electrons, which was established by electron paramagnetic resonance spectroscopy. We conclude that the structure of CNM determines the content and/or ratio of and -hybridized carbon atoms in the material. The experimental and literature data demonstrated that -hybridized carbon atoms on the surface are probably the preferable site for catalytic conversion of alcohols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912505 | PMC |
http://dx.doi.org/10.3390/nano11020352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!