A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous heavy metal removal and sludge deep dewatering with Fe(II) assisted electrooxidation technology. | LitMetric

Simultaneous heavy metal removal and sludge deep dewatering with Fe(II) assisted electrooxidation technology.

J Hazard Mater

School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycle Technology, Wuhan 430074, PR China. Electronic address:

Published: March 2021

A hybrid sludge conditioning strategy with electrooxidation and Fe(II) addition was used for heavy metal removal from sewage sludge and industrial sludge, with simultaneous sludge dewatering and stabilization. With the addition of 82 mg/g DS Fe(II) and treatment time of 4.5 h, heavy metal removals of 72.95% and 78.49% for Cu, 66.29% and 84.26% for Zn, and 36.52% and 36.99% for Pb were achieved from sewage sludge and industrial sludge samples respectively. The system pH decreased to 2.33 and 2.98 and the oxidation-reduction potential (ORP) values increased to 435.90 mV and 480.60 mV in sewage sludge and industrial sludge samples, respectively, which was conducive to the desorption and dissolution of heavy metals from sludge structures and the degradation of the organic compounds that complexed with heavy metals. In addition, the hybrid conditioning process demonstrated excellent dewatering performance due to the efficient electrochemical disintegration of sludge flocs together with the coagulation of sludge particles by Fe(III) generated via electrooxidation. The strong acidic and oxidative environment produced by the enhanced electrooxidation process was also responsible for pathogen inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124072DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
sludge
12
sewage sludge
12
sludge industrial
12
industrial sludge
12
metal removal
8
sludge samples
8
heavy metals
8
simultaneous heavy
4
removal sludge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!