Vasculogenic mimicry (VM), the formation of an alternative microvascular circulation independent of VEGF-driven angiogenesis, is reluctant to anti-angiogenesis therapy for glioma patients. However, treatments targeting VM are lacking due to the poor understanding of the molecular mechanism involved in VM formation. By analysing the TCGA database, microRNA-29a-3p (miR-29a-3p) was found to be highly expressed in normal brain tissue compared with glioma. An study revealed an inhibitory role for miR-29a-3p in glioma cell migration and VM formation, and further study confirmed that ROBO1 is a direct target of miR-29a-3p. Based on this, we engineered human mesenchymal stem cells (MSCs) to produce miR-29a-3p-overexpressing exosomes. Treatment with these exosomes attenuated migration and VM formation in glioma cells. Moreover, the anti-glioma role of miR-29a-3p and miR-29a-3p-overexpressing exosomes were confirmed . Overall, the present study demonstrates that MSCs can be used to produce miR-29a-3p-overexpressing exosomes, which have great potential for anti-VM therapy and may act as supplements to anti-angiogenetic therapy in the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950307PMC
http://dx.doi.org/10.18632/aging.202424DOI Listing

Publication Analysis

Top Keywords

mir-29a-3p-overexpressing exosomes
12
engineered human
8
human mesenchymal
8
mesenchymal stem
8
stem cells
8
vasculogenic mimicry
8
role mir-29a-3p
8
migration formation
8
mscs produce
8
produce mir-29a-3p-overexpressing
8

Similar Publications

MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma.

Aging (Albany NY)

February 2021

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China.

Vasculogenic mimicry (VM), the formation of an alternative microvascular circulation independent of VEGF-driven angiogenesis, is reluctant to anti-angiogenesis therapy for glioma patients. However, treatments targeting VM are lacking due to the poor understanding of the molecular mechanism involved in VM formation. By analysing the TCGA database, microRNA-29a-3p (miR-29a-3p) was found to be highly expressed in normal brain tissue compared with glioma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!