A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ES-ARCNN: Predicting enhancer strength by using data augmentation and residual convolutional neural network. | LitMetric

ES-ARCNN: Predicting enhancer strength by using data augmentation and residual convolutional neural network.

Anal Biochem

Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249-0669, USA; Department of Populational Health Science, The University of Texas Health San Antonio, San Antonio, TX, 78229, USA. Electronic address:

Published: April 2021

Enhancers are non-coding DNA sequences bound by proteins called transcription factors. They function as distant regulators of gene transcription and participate in the development and maintenance of cell types and tissues. Since experimental validation of enhancers is expensive and time-consuming, many computational methods have been developed to predict enhancers and their strength. However, most of these methods still lack good performance in the prediction of enhancer strength. Here, we present a method to predict Enhancers Strength (i.e., strong and weak) by using Augmented data and Residual Convolutional Neural Network (ES-ARCNN). To train ES-ARCNN, we used two data augmentation tricks (i.e., reverse complement and shift) to previously identified enhancers for enlarging a previously identified dataset of enhancers. We further employed a residual convolutional neural network and trained it using the augmented dataset. Compared with other state-of-the-art methods in the 10-fold cross-validation (CV) test, ES-ARCNN has the best performance with the accuracy of 66.17%, and the tricks of data augmentation can effectively improve the prediction performance. We further tested ES-ARCNN on an independent dataset and obtained 65.5% accuracy, which has more than 4% improvement over the other three existing methods. The results in 10CV and independent tests show that ES-ARCNN can effectively predict the enhancer strength. The transcription factor binding sites (TFBSs) enrichment analysis shows that from the mechanistic perspective, enhancer strength is associated with a higher density of important TFBSs in a tissue. A user-friendly web-application is also provided at http://compgenomics.utsa.edu/ES-ARCNN/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2021.114120DOI Listing

Publication Analysis

Top Keywords

enhancer strength
16
data augmentation
12
residual convolutional
12
convolutional neural
12
neural network
12
predict enhancers
8
enhancers strength
8
es-arcnn
6
strength
6
enhancers
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!