This article is part of the Top 10 Unanswered Questions in MPMI invited review series.That plants recruit beneficial microbes while simultaneously restricting pathogens is critical to their survival. Plants must exclude pathogens; however, most land plants are able to form mutualistic symbioses with arbuscular mycorrhizal fungi. Plants also associate with the complex microbial communities that form the microbiome. The outcome of each symbiotic interaction-whether a specific microbe is pathogenic, commensal, or mutualistic-relies on the specific interplay of host and microbial genetics and the environment. Here, we discuss how plants use metabolites as a gate to select which microbes can be symbiotic. Once present, we discuss how plants integrate multiple inputs to initiate programs of immunity or mutualistic symbiosis and how this paradigm may be expanded to the microbiome. Finally, we discuss how environmental signals are integrated with immunity to fine-tune a thermostat that determines whether a plant engages in mutualism, resistance to pathogens, and shapes associations with the microbiome. Collectively, we propose that the plant immune thermostat is set to select for and tolerate a largely nonharmful microbiome while receptor-mediated decision making allows plants to detect and dynamically respond to the presence of potential pathogens or mutualists.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-11-20-0318-FI | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.
View Article and Find Full Text PDFPlant Commun
January 2025
Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:
Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.
We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).
View Article and Find Full Text PDFTrends Biotechnol
January 2025
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!