We describe an efficient photoredox system, relying on decatungstate/disulfide catalysts, for the hydrofunctionalization of styrenes. In this methodology the use of disulfide as a cocatalyst was shown to be crucial for the reaction efficiency. This photoredox system was employed for the hydro-carbamoylation, -acylation, -alkylation, and -silylation of styrenes, giving access to a large variety of useful building blocks and high-value molecules such as amides and unsymmetrical ketones from simple starting materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.1c00189 | DOI Listing |
Chem Asian J
January 2025
Meiji Pharmaceutical University, Pharmaceutical Sciences, 2-522-1 Noshio, 204-8588, Kiyose, JAPAN.
The catalytic indirect reductive quenching method is facilitated by a combination of Ir(III) photoredox and sulfide dual-catalysis system. This study demonstrated a method for synthesizing multi-substituted furans by using a photoredox/sulfide dual-catalysis system. This method enables the synthesis of various furan derivatives, including spirofurans and phthalans.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.
Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.
Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hokkaido University: Hokkaido Daigaku, WPI-ICReDD, Kita 21 Nishi 10, Kita-ku, 001-0021, Sapporo, JAPAN.
Fluorine-containing compounds have shown unparalleled impacts in the realm of functional molecules, and the ability to prepare novel structures has been crucial in unlocking new properties for applications in pharmaceutical and materials science. Herein, we report a copper-catalyzed, photoinduced defluorinative C‒O coupling between trifluoromethylarenes and alcohols. This method allows for direct access to a wide selection of difluorobenzylether (ArCF2OR) molecules, including a compound displaying liquid crystal behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!