Electroosmotic Flow Grows with Electrostatic Coupling in Confining Charged Dielectric Surfaces.

Langmuir

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil.

Published: February 2021

AI Article Synopsis

  • The study explores how the polarization of charged planar dielectric surfaces affects electroosmotic flow, using dissipative particle dynamics and a modified Ewald sum method for simulations.
  • It finds significant differences in counterion density, velocity profiles, and flow rates when surface polarization is included, particularly for moderate to high electrostatic coupling.
  • Notably, there's an observed increase of up to 500% in volumetric flow rate with polarizable surfaces under strong electrostatic conditions, especially when the dielectric constant of the electrolyte is much greater than that of the walls.

Article Abstract

In this work, the effects of polarization of confining charged planar dielectric surfaces on induced electroosmotic flow are investigated. To this end, we use dissipative particle dynamics to model solvent and ionic particles together with a modified Ewald sum method to model electrostatic interactions and surfaces polarization. A relevant difference between counterions number density profiles, velocity profiles, and volumetric flow rates obtained with and without surface polarization for moderate and high electrostatic coupling parameters is observed. For low coupling parameters, the effect is negligible. An increase of almost 500% in volumetric flow rate for moderate/high electrostatic coupling and surface separation is found when polarizable surfaces are considered. The most important result is that the increase in electrostatic coupling substantially increases the electroosmotic flow in all studied range of separations when the dielectric constant of electrolytes is much higher than the dielectric constant of confining walls. For the higher separation simulated, an increase of around 340% in volumetric flow rate when the electrostatic coupling is increased by a factor of two orders of magnitude is obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03116DOI Listing

Publication Analysis

Top Keywords

electrostatic coupling
20
electroosmotic flow
12
volumetric flow
12
confining charged
8
dielectric surfaces
8
coupling parameters
8
flow rate
8
dielectric constant
8
electrostatic
6
coupling
6

Similar Publications

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO Photoreduction.

Small

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide SbOBr to generate CsSbBr/SbOBr heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the CsSbBr/SbOBr heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers.

View Article and Find Full Text PDF

Improved Description of Environment and Vibronic Effects with Electrostatically Embedded ML Potentials.

J Phys Chem Lett

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.

Incorporation of environment and vibronic effects in simulations of optical spectra and excited state dynamics is commonly done by combining molecular dynamics with excited state calculations, which allows to estimate the spectral density describing the frequency-dependent system-bath coupling strength. The need for efficient sampling, however, usually leads to the adoption of classical force fields despite well-known inaccuracies due to the mismatch with the excited state method. Here, we present a multiscale strategy that overcomes this limitation by combining EMLE simulations based on electrostatically embedded ML potentials with the QM/MMPol polarizable embedding model to compute the excited states and spectral density of 3-methyl-indole, the chromophoric moiety of tryptophan that mediates a variety of important biological functions, in the gas phase, in water solution, and in the human serum albumin protein.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!