The change in number densities of aqueous solutions of alkali chlorides should be qualitatively predictable. Typically, as cations get larger, the number density of the solution decreases. However, aqueous solutions of lithium and sodium chloride exhibit at ambient conditions practically identical number densities at equal molalities despite different ionic sizes. Here, we provide an atomistic interpretation of this experimentally observed anomalous behavior using molecular dynamics simulations. The obtained results show that the rigidity of the Li first and second solvation shells and the associated compromised hydrogen bonding result in practically equal average water densities in the local hydration regions for Li and Na despite different sizes of the cations. In addition, in more distant regions from the cations, the water densities of these two solutions also coincide. These findings thus provide an atomistic interpretation for matching number densities of LiCl and NaCl solutions. In contrast, the number density differences between NaCl and KCl solutions as well as between LiCl and KCl solutions behave in a regular fashion with lower number densities of solutions observed for larger cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c10599 | DOI Listing |
J Eval Clin Pract
February 2025
Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
Rationale: Established coronary artery disease (CAD) patients are at increased risk for recurrence of cardiovascular events and mortality due to non-attainment of recommended risk factor control targets.
Objective: We aimed to evaluate the attainment of treatment targets for risk factor control among CAD patients as recommended in the Indonesian CVD prevention guidelines.
Methods: Patients were consecutively recruited from the Makassar Cardiac Center at Wahidin Sudirohusodo Hospital, Indonesia.
Recent single-cell experiments that measure copy numbers of over 40 proteins in individual cells at different time points [time-stamped snapshot (TSS) data] exhibit cell-to-cell variability. Because the same cells cannot be tracked over time, TSS data provide key information about the time-evolution of protein abundances that could yield mechanisms that underlie signaling kinetics. We recently developed a generalized method of moments (GMM) based approach that estimates parameters of mechanistic models using TSS data.
View Article and Find Full Text PDFTerritorial aggression is widespread across the animal kingdom and is expressed in diverse ecological and social contexts. In addition, there are marked variations in the degree of male reproductive territoriality within and between species. These differences are often attributed to genetic components.
View Article and Find Full Text PDFCureus
December 2024
Department of Basic and Clinical Oral Sciences, Umm Al-Qura University, Makkah, SAU.
Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.
View Article and Find Full Text PDFAtheroscler Plus
March 2025
Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Background And Aims: Familial hypercholesterolemia (FH) and other disorders with similar features are common genetic disorders that remain underdiagnosed and undertreated, due in part to the cost of screening. The aim of this study was to design and implement a whole gene targeted NGS panel for the molecular diagnosis of FH and statin intolerance with an emphasis on high quality variant calling, including copy number analysis.
Methods: A whole gene panel for hybridisation-based short read NGS was designed for the dominant FH-genes low density lipoprotein receptor (), apolipoprotein B (APOB), proproteinconvertas subtilisin/kexin type 9 (PCSK9), apolipoprotein E (APOE) and the recessive FH-genes low density lipoprotein receptor adaptor protein 1 (), ATP binding cassette subfamily member 5/8 (ABCG5/8) and lipase A, lysosomal acid type (), as well as solute carrier organic anion transporter family member 1B1 (), not an FH gene but linked to statin intolerance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!