Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the temperature-dependent solvation behavior of a number of important light gases, such as carbon dioxide, xenon, krypton, argon, oxygen, methane, nitrogen, neon, and hydrogen, in two important imidazolium-based ionic liquids (ILs) of the type 1--alkyl-3-methylimidazolium hexafluorophosphate ([Cmim][PF]) and 1--alkyl-3-methylimidazolium tetrafluoroborate ([CmimBF]) with varying chain lengths ( = 2, 4, 6, and 8) are investigated using molecular dynamics simulations for a temperature range between 300 and 500 K at a pressure of 1 bar. The aim of this work is first to propose a reliable estimate for the temperature-dependent solubility behavior of (very) light gases, e.g., hydrogen and nitrogen, where reported experimental data are inconsistent. Moreover, we would like to rationalize the common features of the temperature-dependent solvation of light gases for various imidazolium-based ionic liquids. For the selected solute gases in our simulated imidazolium-based ILs, we applied the potential distribution theorem using both Bennet's overlapping distribution method (ODM) and Widom's particle insertion technique to determine the temperature-dependent solvation free energies with good statistical accuracy. We observed from the simulations that the quantity of the solvation free energy of a gas molecule and its temperature derivatives are connected in regard to each other at a chosen reference temperature. This trend was observed for all the studied light gases. Moreover, the computed solvation enthalpies of all gases obey an enthalpy-entropy compensation behavior, which is almost identical for all the studied ILs. Based on this observation, we report a correlation between the temperature-dependent solubility behavior of light gases in various ILs at their reference state so that we are now able to semiquantitively predict the temperature-dependent solubility behavior of a certain gas in various imidazolium-based ionic liquids based on a single solubility value of that gas in one of the ILs at a certain temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c10721 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!