A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quasi-Universal Solubility Behavior of Light Gases in Imidazolium-Based Ionic Liquids with Varying Anions: A Molecular Dynamics Simulation Study. | LitMetric

Quasi-Universal Solubility Behavior of Light Gases in Imidazolium-Based Ionic Liquids with Varying Anions: A Molecular Dynamics Simulation Study.

J Phys Chem B

Institut für Chemie, Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Str. 21, D-18059 Rostock, Germany.

Published: February 2021

In this work, the temperature-dependent solvation behavior of a number of important light gases, such as carbon dioxide, xenon, krypton, argon, oxygen, methane, nitrogen, neon, and hydrogen, in two important imidazolium-based ionic liquids (ILs) of the type 1--alkyl-3-methylimidazolium hexafluorophosphate ([Cmim][PF]) and 1--alkyl-3-methylimidazolium tetrafluoroborate ([CmimBF]) with varying chain lengths ( = 2, 4, 6, and 8) are investigated using molecular dynamics simulations for a temperature range between 300 and 500 K at a pressure of 1 bar. The aim of this work is first to propose a reliable estimate for the temperature-dependent solubility behavior of (very) light gases, e.g., hydrogen and nitrogen, where reported experimental data are inconsistent. Moreover, we would like to rationalize the common features of the temperature-dependent solvation of light gases for various imidazolium-based ionic liquids. For the selected solute gases in our simulated imidazolium-based ILs, we applied the potential distribution theorem using both Bennet's overlapping distribution method (ODM) and Widom's particle insertion technique to determine the temperature-dependent solvation free energies with good statistical accuracy. We observed from the simulations that the quantity of the solvation free energy of a gas molecule and its temperature derivatives are connected in regard to each other at a chosen reference temperature. This trend was observed for all the studied light gases. Moreover, the computed solvation enthalpies of all gases obey an enthalpy-entropy compensation behavior, which is almost identical for all the studied ILs. Based on this observation, we report a correlation between the temperature-dependent solubility behavior of light gases in various ILs at their reference state so that we are now able to semiquantitively predict the temperature-dependent solubility behavior of a certain gas in various imidazolium-based ionic liquids based on a single solubility value of that gas in one of the ILs at a certain temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c10721DOI Listing

Publication Analysis

Top Keywords

light gases
24
solubility behavior
16
imidazolium-based ionic
16
ionic liquids
16
behavior light
12
temperature-dependent solvation
12
temperature-dependent solubility
12
gases
8
gases imidazolium-based
8
molecular dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!