Structural determinants of the IRF4/DNA homodimeric complex.

Nucleic Acids Res

Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia.

Published: February 2021

Interferon regulatory factor 4 (IRF4) is a key transcription factor (TF) in the regulation of immune cells, including B and T cells. It acts by binding DNA as both a homodimer and, in conjunction with other TFs, as a heterodimer. The choice of homo and heterodimeric/ DNA interactions is a critical aspect in the control of the transcriptional program and cell fate outcome. To characterize the nature of this interaction in the homodimeric complex, we have determined the crystal structure of the IRF4/ISRE homodimeric complex. We show that the complex formation is aided by a substantial DNA deformation with co-operative binding achieved exclusively through protein-DNA contact. This markedly contrasts with the heterodimeric form where DNA bound IRF4 is shown to physically interact with PU.1 TF to engage EICE1. We also show that the hotspot residues (Arg98, Cys99 and Asn102) contact both consensus and non-consensus sequences with the L1 loop exhibiting marked flexibility. Additionally, we identified that IRF4L116R, a mutant associated with chronic lymphocytic leukemia, binds more robustly to DNA thereby providing a rationale for the observed gain of function. Together, we demonstrate key structural differences between IRF4 homo and heterodimeric complexes, thereby providing molecular insights into IRF4-mediated transcriptional regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913761PMC
http://dx.doi.org/10.1093/nar/gkaa1287DOI Listing

Publication Analysis

Top Keywords

homodimeric complex
12
dna
5
structural determinants
4
determinants irf4/dna
4
irf4/dna homodimeric
4
complex
4
complex interferon
4
interferon regulatory
4
regulatory factor
4
factor irf4
4

Similar Publications

Homeodomain Involvement in Nuclear HOX Protein Homo- and Heterodimerization.

Int J Mol Sci

January 2025

Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.

genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.

View Article and Find Full Text PDF

An in silico redesign of the secondary quinone electron acceptor (Q) binding pocket of the D1 protein of Photosystem II (PSII) suggested that mutations of the F265 residue would affect atrazine binding. Chlamydomonas reinhardtii mutants F265T and F265S were produced to obtain atrazine-hypersensitive strains for biosensor applications, and the mutants were indeed found to be more atrazine-sensitive than the reference strain IL. Fluorescence and thermoluminescence data agree with a weak driving force and confirm slow electron transfer but cannot exclude an additional effect on protonation of the secondary quinone.

View Article and Find Full Text PDF

The biologic activities of antibody drugs are dictated by structure-function relationships-emerging from the kind, composition, and degree of interactions with a target antigen and with soluble and cellular antibody receptors of the innate immune system. These activities are canonically understood to be both modular: antigen recognition is driven by the heterodimeric antigen-binding fragment, and innate immune recruitment by the homodimeric constant/crystallizable fragment. The model that treats these domains with a high degree of independence has served the field well but is not without limitations.

View Article and Find Full Text PDF

The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens.

Mol Plant

January 2025

Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China. Electronic address:

Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. In this study, we show that ALEX1, a previously identified pathogen-induced long noncoding RNA, localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3 (ARF3).

View Article and Find Full Text PDF

Construction and enzymatic characterization of a monomeric variant of dimeric amylosucrase from Deinococcus geothermalis.

Int J Biol Macromol

January 2025

Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea. Electronic address:

Article Synopsis
  • Amylosucrase (ASase) from Deinococcus geothermalis (DgAS) is characterized as a dimeric enzyme that produces α-1,4-glucans using sucrose, and this study reveals key amino acids important for maintaining its dimeric structure.
  • The mutated monomeric form (DgAS R30A) shows a stronger affinity for sucrose and preferentially produces shorter α-glucans with a degree of polymerization (DP) of ≤20.
  • The research also uncovers the first high-resolution structure of dimeric DgAS, providing insights into enzyme activity and the significance of dimerization for its functional properties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!