Aptamers have many useful attributes including specific binding to molecular targets. After aptamers are identified, their target binding must be characterized. Fluorescence anisotropy (FA) is one technique that can be used to characterize affinity and to optimize aptamer-target interactions. Efforts to make FA assays more efficient by reducing assay volume and time from mixing to measurement may save time and resources by minimizing consumption of costly reagents. Here, we use thrombin and two thrombin-binding aptamers as a model system to show that plate-based FA experiments can be performed in volumes as low as 2 μL per well with 20 minute incubations with minimal loss in assay precision. We demonstrate that the aptamer-thrombin interaction is best modelled with the Hill equation, indicating cooperative binding. The miniaturization of this assay has implications in drug development, as well as in the efficiency of aptamer selection workflows by allowing for higher throughput aptamer analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ay02256j | DOI Listing |
Photochem Photobiol Sci
December 2024
Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.
View Article and Find Full Text PDFWe report photon-phonon dressing quantization dependency on polarization. Destructive dressing polarization quantization is exhibited in fluorescence (FL) for narrowband signals, while constructive dominant dressing quantization is exhibited in fluorescence (FL) for broadband signals due to phase perturbation. Furthermore, constructive polarization quantization results due to coexistence of generation and dressing effects in strong and competitive Rabi frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!