Metabolic engineering of Pseudomonas putida for production of vanillylamine from lignin-derived substrates.

Microb Biotechnol

Division of Applied Microbiology, Department of Chemistry, Faculty of Engineering, Lund University, PO Box 124, Lund, 221 00, Sweden.

Published: November 2021

Whole-cell bioconversion of technical lignins using Pseudomonas putida strains overexpressing amine transaminases (ATAs) has the potential to become an eco-efficient route to produce phenolic amines. Here, a novel cell growth-based screening method to evaluate the in vivo activity of recombinant ATAs towards vanillylamine in P. putida KT2440 was developed. It allowed the identification of the native enzyme Pp-SpuC-II and ATA from Chromobacterium violaceum (Cv-ATA) as highly active towards vanillylamine in vivo. Overexpression of Pp-SpuC-II and Cv-ATA in the strain GN442ΔPP_2426, previously engineered for reduced vanillin assimilation, resulted in 94- and 92-fold increased specific transaminase activity, respectively. Whole-cell bioconversion of vanillin yielded 0.70 ± 0.20 mM and 0.92 ± 0.30 mM vanillylamine, for Pp-SpuC-II and Cv-ATA, respectively. Still, amine production was limited by a substantial re-assimilation of the product and formation of the by-products vanillic acid and vanillyl alcohol. Concomitant overexpression of Cv-ATA and alanine dehydrogenase from Bacillus subtilis increased the production of vanillylamine with ammonium as the only nitrogen source and a reduction in the amount of amine product re-assimilation. Identification and deletion of additional native genes encoding oxidoreductases acting on vanillin are crucial engineering targets for further improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601178PMC
http://dx.doi.org/10.1111/1751-7915.13764DOI Listing

Publication Analysis

Top Keywords

pseudomonas putida
8
production vanillylamine
8
whole-cell bioconversion
8
pp-spuc-ii cv-ata
8
vanillylamine
5
metabolic engineering
4
engineering pseudomonas
4
putida production
4
vanillylamine lignin-derived
4
lignin-derived substrates
4

Similar Publications

Pseudomonas spp. are a psychrotrophic species associated with milk spoilage caused by its enzymatic activities. The aim of this study was to identify Pseudomonas spp.

View Article and Find Full Text PDF

Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants.

Curr Res Microb Sci

November 2024

Microbiology and Plant Pathology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India.

Medicinal plants exhibited great role in drug industries. Herbal medicines and their derivative products are often prepared from crude plant extracts. and both are belonging to Asteraceae family and these plants are ethnomedicinally important due to their utilization as traditional medicine to cure various diseases.

View Article and Find Full Text PDF

Background: Pseudomonas putida KT2440, a non-pathogenic soil bacterium, is a key platform strain in synthetic biology and industrial applications due to its robustness and metabolic versatility. Various systems have been developed for genome editing in P. putida, including transposon modules, integrative plasmids, recombineering systems, and CRISPR/Cas systems.

View Article and Find Full Text PDF

This study investigated the effects of bamboo shoot extract (Bambusa vulgaris) as a feed additive on the health profiles and infection resistance of Nile tilapia (Oreochromis niloticus) against Pseudomonas putida. Bamboo shoot extract was added at levels of 0 g, 40 g, and 60 g per 1000 g of diet over a 60-day period. The fish were then challenged with a pathogenic P.

View Article and Find Full Text PDF

Converting multiple hydrophobic aromatic plastic monomers into a single water-soluble substrate to increase bioavailability for the synthesis of polyhydroxyalkanoates by bacteria using batch, fed batch and continuous cultivation.

J Biotechnol

December 2024

School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:

We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!