Selective saturation of step-edges as a tool to control the growth of molecular fibres.

Phys Chem Chem Phys

Molekulare Festkörperphysik, Philipps-University Marburg, D-35032 Marburg, Germany.

Published: April 2021

The concept of bottom-up self-organisation has become a promising alternative for structuring molecular materials, which are hardly accessible by conventional top-down approaches such as lithography due to their limited chemical robustness. While these materials often tend to form three-dimensional, crystalline islands or fibres upon film growth, the size and orientation of such fibres are mainly governed by appropriate preparation conditions as well as microscopic interactions at the interface with the supporting surface. Substrate surface defects such as vacancies or step-edges, which cannot be completely ruled out on real surfaces on the mesoscopic scale, can act as preferred nucleation sites for molecules that leads to parasitic film growth competing with their intrinsic alignment prevailing on an ideal surface. In the present study, we demonstrate for the case of para-quaterphenyl (p-4P) that the presence of azimuthally disordered, fibres on Ag(111) surfaces can be understood as a superposition of step-mediated nucleation and the intrinsic epitaxial fibre growth on ideal surfaces. We validate the concept by purposely exposing the silver substrates briefly to oxygen or even ambient air to passivate the more reactive step-sites, which hampers subsequently grown molecular films to nucleate at these step-edges. This yields a truly epitaxial alignment as well as an enlargement of the fibres present on the whole sample.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp06725cDOI Listing

Publication Analysis

Top Keywords

film growth
8
fibres
5
selective saturation
4
saturation step-edges
4
step-edges tool
4
tool control
4
growth
4
control growth
4
growth molecular
4
molecular fibres
4

Similar Publications

This study investigates the perceptions of university students majoring in film and media production (FMP) regarding the over-the-top (OTT) industry. We used the Q methodology to achieve this study's purpose, with 33 Q sets and 22 university students majoring in FMP. The study revealed three perception structures of FMP major university students regarding the OTT industry.

View Article and Find Full Text PDF

Phosphorous-containing materials are used in a wide array of fields, from energy conversion and storage to heterogeneous catalysis and biomaterials. Among these materials, organic-inorganic metal phosphonate solids and thin films present an interesting option, due to their remarkable thermal and chemical stability. Yet, the synthesis of phosphonate hybrids by vapour phase thin film deposition techniques remains largely unexplored.

View Article and Find Full Text PDF

Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications.

Nanomicro Lett

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!