Microencapsulation technologies are being developed to protect transplanted islets from immune rejection, to reduce or even eliminate the need for immunosuppression. However, unencapsulated cells increase the chances of rejection and empty beads increase transplant volumes. Thus, separation processes were investigated to remove these byproducts based on density differences. The densities of islet-sized mouse insulinoma 6 (MIN6) cell aggregates and acellular 5% alginate beads generated via emulsification and internal gelation were ~ 1.065 and 1.042 g/ml, respectively. The separation of empty beads from those containing aggregates was performed by sedimentation under unit gravity in continuous gradients of polysucrose and sodium diatrizoate with density ranges of 1.032-1.045, 1.035-1.044, or 1.039-1.042 g/ml. The 1.039-1.042 g/ml gradient enabled recoveries of ~ 80% of the aggregate-containing beads while the other gradients recovered only ~ 60%. The bottom fraction of the 1.039-1.042 g/ml gradient contained beads with ~ 6% of their volume occupied by cell aggregates. Separation of unencapsulated aggregates from the aggregate-containing beads was then achieved by centrifugation of this purified fraction in a 1.055 g/ml density solution. Thus, these sedimentation-based approaches can effectively remove the byproducts of cell encapsulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3133DOI Listing

Publication Analysis

Top Keywords

cell aggregates
12
empty beads
8
remove byproducts
8
1039-1042 g/ml gradient
8
aggregate-containing beads
8
beads
6
aggregates
5
two-step sedimentation
4
sedimentation process
4
process selection
4

Similar Publications

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.

View Article and Find Full Text PDF

Cellular systems that govern protein folding rely on a delicate balance of functional redundancy and diversification to maintain protein homeostasis (proteostasis). Here, we use to demonstrate how both overlapping and divergent activities of two homologous endoplasmic reticulum (ER)-resident HSP70 family chaperones, HSP-3 and HSP-4, orchestrate ER proteostasis and contribute to organismal physiology. We identify tissue-, age-, and stress-specific protein expression patterns and find both redundant and distinct functions for HSP-3 and HSP-4 in ER stress resistance, reproduction, and body size regulation.

View Article and Find Full Text PDF

Genetic prediction of complex traits, enabled by large-scale genomic studies, has created new measures to understand individual genetic predisposition. Polygenic Risk Scores (PRS) offer a way to aggregate information across the genome, enabling personalized risk prediction for complex traits and diseases. However, conventional PRS calculation methods that rely on linear models are limited in their ability to capture complex patterns and interaction effects in high-dimensional genomic data.

View Article and Find Full Text PDF

We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems ( ). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!