Sorghum ( (L.) Moench) is an important food crop in semi-arid tropics. The crop grain yield ranges from 0.5 t/ha to 0.8 t/ha compared to potential yields of 10 t/ha. The African stem borer Fuller (Noctuidae) and the spotted stem borer Swinhoe (Crambidae), are among the most economically important insect pests of sorghum. The two borers can cause 15% - 80% grain yield loss in sorghum. Mapping of QTLs associated with resistance traits to the two stem borers is important towards marker-assisted breeding. The objective of this study was to map QTLs associated with resistance traits to and in sorghum. 243 F sorghum RILs derived from ICSV 745 (S) and PB 15520-1 (R) were selected for the study with 4,955 SNP markers. The RILs were evaluated in three sites. Data was collected on leaf feeding, deadheart, exit holes, stem tunnels, leaf toughness, seedling vigour, bloom waxiness, and leaf glossiness. ANOVA for all the traits was done using Genstat statistical software. Insect damage traits and morphological traits were correlated using Pearson's correlation coefficients. Genetic mapping was done using JoinMap 4 software, while QTL analysis was done using PLABQTL software. A likelihood odds ratio (LOD) score of 3.0 was used to declare linkage. Joint analyses across borer species and sites revealed 4 QTLs controlling deadheart formation; 6 controlling leaf feeding damage; 5 controlling exit holes and stem tunneling damages; 2 controlling bloom waxiness, leaf glossiness, and seedling vigour; 4 conditioning trichome density; and 6 conditioning leaf toughness. Joint analyses for and further revealed that marker colocalised for leaf toughness and stem tunneling traits on QTLs 1 and 2, respectively; thus, the two traits can be improved using the same linked marker. This study recommended further studies to identify gene(s) underlying the mapped QTLs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834829PMC
http://dx.doi.org/10.1155/2021/7016712DOI Listing

Publication Analysis

Top Keywords

stem borer
16
leaf toughness
12
traits
8
stem
8
african stem
8
spotted stem
8
grain yield
8
qtls associated
8
associated resistance
8
resistance traits
8

Similar Publications

Background: The rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), is a damaging pest of rice worldwide. Following the evolution of C. suppressalis resistance to diamide and abamectin insecticides, emamectin benzoate (EB) became a key insecticide for the control of this species in China.

View Article and Find Full Text PDF

Regulation of Insect Hormones in Different Types of Diapause in Chilo Partellus (Swinhoe).

J Exp Zool A Ecol Integr Physiol

November 2024

Department of Zoology and Environmental Sciences, Punjabi University, Patiala, India.

Maize stem borer, Chilo partellus (Swinhoe) is a key pest of maize and sorghum. It undergoes both in estivation and hibernation depending on prevailing environmental conditions. Present investigations were aimed to decipher the regulation of ecdysone, 20-hydroxyecdysone (20E) and juvenile hormone III (JH III) during different stages (prediapause, diapause and post-diapause/pupae) of hibernation and estivation as compared to counterpart nondiapause C.

View Article and Find Full Text PDF

Flavin-Dependent Monooxgenase Confers Resistance to Chlorantraniliprole and Spinetoram in the Rice Stem Borer Walker (Lepidoptera: Crambidae).

J Agric Food Chem

December 2024

College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China.

Article Synopsis
  • * The study identified five FMO genes and found that specific genes (FMO3B and FMO3C) were overexpressed in field populations resistant to treatments like chlorantraniliprole and spinetoram, but not to all insecticides.
  • * Molecular studies confirmed that these FMOs directly bind to certain insecticides, contributing to metabolic resistance, highlighting their importance in developing effective pest management strategies.
View Article and Find Full Text PDF

The Evolution and Mechanisms of Multiple-Insecticide Resistance in Rice Stem Borer, Walker (Lepidoptera: Crambidae).

J Agric Food Chem

November 2024

College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China.

Article Synopsis
  • The rice stem borer is developing resistance to key insecticides, posing a challenge for its control and management in agriculture.
  • Research on 126 populations from China showed moderate to high resistance to four main insecticides, revealing genetic mutations linked to this resistance.
  • Understanding these resistance mechanisms, including both target-site mutations and nontarget mechanisms like enzyme overexpression, can aid in developing effective and sustainable pest management strategies.
View Article and Find Full Text PDF

Introduction: Validations of previously detected quantitative trait loci (QTLs) to assess their reliability are crucial before implementing breeding programs. The objective of this study was to determine the reliability and practical usefulness of previously reported QTLs for resistance to stem tunneling by the Mediterranean stem borer (MSB) and yield. These authors used approximately 600 recombinant inbred lines (RILs) from a multiparent advanced generation intercross (MAGIC) population to map QTL using a genome-wide association study (GWAS) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!