Background: Reducing the radiation tracer dose and scanning time during positron emission tomography (PET) imaging can reduce the cost of the tracer, reduce motion artifacts, and increase the efficiency of the scanner. However, the reconstructed images to be noisy. It is very important to reconstruct high-quality images with low-count (LC) data. Therefore, we propose a deep learning method called LCPR-Net, which is used for directly reconstructing full-count (FC) PET images from corresponding LC sinogram data.
Methods: Based on the framework of a generative adversarial network (GAN), we enforce a cyclic consistency constraint on the least-squares loss to establish a nonlinear end-to-end mapping process from LC sinograms to FC images. In this process, we merge a convolutional neural network (CNN) and a residual network for feature extraction and image reconstruction. In addition, the domain transform (DT) operation sends a priori information to the cycle-consistent GAN (CycleGAN) network, avoiding the need for a large amount of computational resources to learn this transformation.
Results: The main advantages of this method are as follows. First, the network can use LC sinogram data as input to directly reconstruct an FC PET image. The reconstruction speed is faster than that provided by model-based iterative reconstruction. Second, reconstruction based on the CycleGAN framework improves the quality of the reconstructed image.
Conclusions: Compared with other state-of-the-art methods, the quantitative and qualitative evaluation results show that the proposed method is accurate and effective for FC PET image reconstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779905 | PMC |
http://dx.doi.org/10.21037/qims-20-66 | DOI Listing |
Nat Commun
January 2025
Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Comp. Sci. Dep, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, 08193, Catalunya, Spain.
Purpose: This work addresses the detection of Helicobacter pylori (H. pylori) in histological images with immunohistochemical staining. This analysis is a time-demanding task, currently done by an expert pathologist that visually inspects the samples.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
Department of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
Background And Purpose: DWI is crucial for detecting infarction stroke. However, its spatial resolution is often limited, hindering accurate lesion visualization. Our aim was to evaluate the image quality and diagnostic confidence of deep learning (DL)-based super-resolution reconstruction for brain DWI of infarction stroke.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Providence Portland Medical Center, Portland, Oregon, USA.
Objectives: Multiplex immunohistochemistry and immunofluorescence (mIHC/IF) are emerging technologies that can be used to help define complex immunophenotypes in tissue, quantify immune cell subsets, and assess the spatial arrangement of marker expression. mIHC/IF assays require concerted efforts to optimize and validate the multiplex staining protocols prior to their application on slides. The best practice guidelines for staining and validation of mIHC/IF assays across platforms were previously published by this task force.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist, Taipei, 112304, Taiwan.
Background: Meningioma, the most common primary brain tumor, presents significant challenges in MRI-based diagnosis and treatment planning due to its diverse manifestations. Convolutional Neural Networks (CNNs) have shown promise in improving the accuracy and efficiency of meningioma segmentation from MRI scans. This systematic review and meta-analysis assess the effectiveness of CNN models in segmenting meningioma using MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!