Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Visualization of diffuse myocardial fibrosis is challenging and mainly relies on histology. Cardiac magnetic resonance (CMR), which uses extracellular contrast agents, is a rapidly developing technique for measuring the extracellular volume (ECV). The objective of this study was to evaluate the feasibility of the synthetic myocardial ECV fraction based on 3.0 T CMR compared with the conventional ECV fraction.
Methods: This study was approved by the local animal care and ethics committee. Fifteen beagle models with diffuse myocardial fibrosis, including 12 experimental and three control subjects, were generated by injecting doxorubicin 30 mg/m intravenously every three weeks for 24 weeks. Short-axis (SAX) and 4-chamber long-axis (LAX) T1 maps were acquired for both groups. The association between hematocrit (Hct) and native T1 was derived from 9 non-contrast CMR T1 maps of 3 control beagles using regression analysis. Synthetic ECV was then calculated using the synthetic Hct and compared with conventional ECV at baseline and the 16 and 24 week after doxorubicin administration. The collagen volume fraction (CVF) value was measured on digital biopsy samples. Bland-Altman plots were used to analyze the agreement between conventional and synthetic ECV. Correlation analyses were performed to explore the association among conventional ECV, synthetic ECV, CVF, and left ventricular ejection fraction (LVEF).
Results: The regression model synthetic Hct = 816.46*R1 - 0.01 (R=0.617; P=0.012) was used to predict the Hct from native T1 values. The conventional and synthetic ECV fractions of experimental animals at the 16 and 24 week after modeling were significantly higher than those measured at the baseline (31.4%±2.2% and 36.3%±2.1% 22.9%±1.7%; 29.9%±2.4% and 36.1%±2.6% 22.0%±2.4%; all with P<0.05). Bland-Altman plots showed a bias (1.0%) between conventional and synthetic ECV with 95% limits of agreement of -2.5% to 4.4% in the per-subject analysis (n=21) and a bias (1.0%) between conventional and synthetic ECV with 95% limits of agreement of -2.4% to 4.3% in the per-segment analysis (n=294). Conventional and synthetic ECV were well correlated with CVF (r=0.937 and 0.925, all with P<0.001, n=10).
Conclusions: Our study showed promising results for using synthetic ECV compared with the conventional ECV for providing accurate quantification of myocardial ECV without the need for blood sampling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779919 | PMC |
http://dx.doi.org/10.21037/qims-20-501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!