Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any genes of the cycle. In severe cases, currently available therapies are marginally effective, with liver transplantation being the only definitive treatment. Donor liver availability can limit even this therapy. Identification of novel therapeutics for genetic-based liver diseases requires models that provide measurable hepatic functions and phenotypes. Advances in stem cell and genome editing technologies could provide models for the investigation of cell-based genetic diseases, as well as the platforms for drug discovery. This report demonstrates a practical, and widely applicable, approach that includes the successful reprogramming of somatic cells from a patient with a urea cycle defect, their genetic correction and differentiation into hepatic organoids, and the subsequent demonstration of genetic and phenotypic change in the edited cells consistent with the correction of the defect. While individually rare, there is a large number of other genetic-based liver diseases. The approach described here could be applied to a broad range and a large number of patients with these hepatic diseases where it could serve as an in vitro model, as well as identify successful strategies for corrective cell-based therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865883PMC
http://dx.doi.org/10.3390/ijms22031217DOI Listing

Publication Analysis

Top Keywords

urea cycle
12
cycle defect
8
stem cell
8
genetic-based liver
8
liver diseases
8
large number
8
gene editing
4
editing correction
4
correction urea
4
cycle
4

Similar Publications

Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.

View Article and Find Full Text PDF

Background: Citrin deficiency (CD) is an autosomal recessive metabolic disorder affecting the urea cycle and energy production. Diagnosis involves measuring ammonia and amino acid levels (eg: citrulline), with confirmation through solute carrier family 25 member 13 (SLC25A13) gene mutation analysis. Herein, we present a case report of a variant in the SLC25A13 gene that has not been previously reported in the literature.

View Article and Find Full Text PDF

Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder, characterized by hyperammonemia and accompanied by a high unmet patient need. mRNA therapies have been shown to be efficacious in hypomorphic Sparse-fur abnormal skin and hair (Spf-ash) mice, a model of late-onset disease. However, studying the efficacy of ornithine transcarbamylase (OTC) mRNA therapy in traditional knockout mice, a model for severe early-onset OTCD, is hampered by the rapid lethality of the model, and poor lipid nanoparticle (LNP) uptake into neonatal mouse liver.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how adding nitrogen fertilizers affects the remobilization of cadmium in rice fields, highlighting increased cadmium levels in rice due to ammonia nitrogen (NH-N) compared to nitrogen (NO-N).
  • Organic acids secreted by rice roots, particularly under NH-N treatment, were found to play a significant role in increasing soluble cadmium content and impacting microbial community functions.
  • The research suggests a complex interaction between nutrient application, cadmium levels, and microbial dynamics that could elevate cadmium exposure through rice consumption.
View Article and Find Full Text PDF

Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer.

J Clin Med

December 2024

Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan.

The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The published miRNA abnormalities were searched in the microRNA Cancer Association Database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!