The design and application of Soft Sensors (SSs) in the process industry is a growing research field, which needs to mediate problems of model accuracy with data availability and computational complexity. Black-box machine learning (ML) methods are often used as an efficient tool to implement SSs. Many efforts are, however, required to properly select input variables, model class, model order and the needed hyperparameters. The aim of this work was to investigate the possibility to transfer the knowledge acquired in the design of a SS for a given process to a similar one. This has been approached as a transfer learning problem from a source to a target domain. The implementation of a transfer learning procedure allows to considerably reduce the computational time dedicated to the SS design procedure, leaving out many of the required phases. Two transfer learning methods have been proposed, evaluating their suitability to design SSs based on nonlinear dynamical models. Recurrent neural structures have been used to implement the SSs. In detail, recurrent neural networks and long short-term memory architectures have been compared in regard to their transferability. An industrial case of study has been considered, to evaluate the performance of the proposed procedures and the best compromise between SS performance and computational effort in transferring the model. The problem of labeled data scarcity in the target domain has been also discussed. The obtained results demonstrate the suitability of the proposed transfer learning methods in the design of nonlinear dynamical models for industrial systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865368 | PMC |
http://dx.doi.org/10.3390/s21030823 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.
Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.
View Article and Find Full Text PDFJ Clin Exp Neuropsychol
January 2025
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!