The increasing prevalence of colonic diseases calls for a better understanding of the various colonic drug absorption barriers of colon-targeted formulations, and for reliable in vitro tools that accurately predict local drug disposition. In vivo relevant incubation conditions have been shown to better capture the composition of the limited colonic fluid and have resulted in relevant degradation and dissolution kinetics of drugs and formulations. Furthermore, drug hurdles such as efflux transporters and metabolising enzymes, and the presence of mucus and microbiome are slowly integrated into drug stability- and permeation assays. Traditionally, the well characterized Caco-2 cell line and the Ussing chamber technique are used to assess the absorption characteristics of small drug molecules. Recently, various stem cell-derived intestinal systems have emerged, closely mimicking epithelial physiology. Models that can assess microbiome-mediated drug metabolism or enable coculturing of gut microbiome with epithelial cells are also increasingly explored. Here we provide a comprehensive overview of the colonic physiology in relation to drug absorption, and review colon-targeting formulation strategies and in vitro tools to characterize colonic drug disposition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912393 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13020161 | DOI Listing |
Ophthalmol Sci
November 2024
A2-Ai, Ann Arbor, Michigan.
Objective: To develop a population pharmacokinetic (PK) model to characterize serum pegcetacoplan concentration-time data after intravitreal administration in patients with geographic atrophy (GA) or neovascular age-related macular degeneration (nAMD).
Design: Pharmacokinetic modeling.
Participants: Two hundred sixty-one patients with GA or nAMD enrolled in 4 clinical studies of pegcetacoplan.
Eur J Pharm Sci
January 2025
Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal. Electronic address:
Zonisamide exhibits significant pharmacokinetic variability, demanding for the development of population pharmacokinetic (PopPK) models to identify key factors influencing drug disposition. This study aimed to develop and validate a PopPK to optimize zonisamide posology in patients with refractory epilepsy. A total of 114 plasma concentrations of zonisamide, obtained from 64 patients, were used for PopPK model development, employing the nonlinear mixed-effects modelling approach.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
December 2024
Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan. Electronic address:
The intestines are an important organ with a variety of functions. For drug discovery research, experimental animals and Caco-2 cells derived from a human colon carcinoma may be used to evaluate the absorption and safety of orally administered drugs. These systems have issues, such as species differences with humans in experimental animals, variations in gene expression patterns, very low drug-metabolizing activities in Caco-2 cells, and the recent trend toward reduced animal testing.
View Article and Find Full Text PDFAntibodies (Basel)
January 2025
MacroGenics Inc., Rockville, MD 20850, USA.
Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, 700135, India.
Existing chemotherapeutic approaches against refractory cancers are ineffective due to off-target effects, inefficient delivery, and inadequate accumulation of anticancer drugs at the tumor site, which causes limited efficiency of drug treatment and toxicity to neighboring healthy cells. The development of nano-based drug delivery systems (DDSs) with the goal of delivering desired therapeutic doses to the diseased cells and has already proven to be a promising strategy to address these challenges. Our study focuses on achieving an efficient tumor-targeted delivery of a combination of drugs for therapeutic benefits by developing a versatile DDS by following a simple one-step chemical approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!