Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myotonic dystrophy type 1 (DM1), the most frequent inherited muscular dystrophy in adults, is caused by the CTG repeat expansion in the 3'UTR of the gene. Mutant RNA accumulates in nuclear foci altering diverse cellular functions including alternative splicing regulation. DM1 is a multisystemic condition, with debilitating central nervous system alterations. Although a defective neuroglia communication has been described as a contributor of the brain pathology in DM1, the specific cellular and molecular events potentially affected in glia cells have not been totally recognized. Thus, to study the effects of DM1 mutation on glial physiology, in this work, we have established an inducible DM1 model derived from the MIO-M1 cell line expressing 648 CUG repeats. This new model recreated the molecular hallmarks of DM1 elicited by a toxic RNA gain-of-function mechanism: accumulation of RNA foci colocalized with MBNL proteins and dysregulation of alternative splicing. By applying a microarray whole-transcriptome approach, we identified several gene changes associated with DM1 mutation in MIO-M1 cells, including the immune mediators , , , and , as well as the microRNAs miR-222, miR-448, among others, as potential regulators. A gene ontology enrichment analyses revealed that inflammation and immune response emerged as major cellular deregulated processes in the MIO-M1 DM1 cells. Our findings indicate the involvement of an altered immune response in glia cells, opening new windows for the study of glia as potential contributor of the CNS symptoms in DM1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910866 | PMC |
http://dx.doi.org/10.3390/biom11020159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!