While the research interest for exoskeletons has been rising in the last decades, missing standards for their rigorous evaluation are potentially limiting their adoption in the industrial field. In this context, exoskeletons for worker support have the aim to reduce the physical effort required by humans, with dramatic social and economic impact. Indeed, exoskeletons can reduce the occurrence and the entity of work-related musculoskeletal disorders that often cause absence from work, resulting in an eventual productivity loss. This very urgent and multifaceted issue is starting to be acknowledged by researchers. This article provides a systematic review of the state of the art for functional performance evaluation of low-back exoskeletons for industrial workers. We report the state-of-the-art evaluation criteria and metrics used for such a purpose, highlighting the lack of a standard for this practice. Very few studies carried out a rigorous evaluation of the assistance provided by the device. To address also this topic, the article ends with a proposed framework for the functional validation of low-back exoskeletons for the industry, with the aim to pave the way for the definition of rigorous industrial standards.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865790 | PMC |
http://dx.doi.org/10.3390/s21030808 | DOI Listing |
Appl Ergon
January 2025
University Savoie Mont Blanc, Interuniversity Laboratory of Human Movement Sciences, Le Bourget du Lac, F-7337, France. Electronic address:
Home care workers are affected by musculoskeletal disorders caused by biomechanical factors. This study investigated the effect of three exoskeletons devices (HAPO, HAPO FRONT and Japet.W) during load mobilization tasks at three bed heights in order to reduce physical risk factor.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
The objectives of this case series study were to test whether an elastic back exosuit could increase a wearer's endurance when lifting heavy objects and to assess whether lifting more cancels out the exosuit's risk reduction benefits. We found that 88% of participants increased their lifting repetitions while wearing an exosuit, with endurance increases ranging from 28 to 75%. We then used these empirical data with an ergonomic assessment model based on fatigue failure principles to estimate the effects on cumulative back damage (an indicator of low back disorder risk) when an exosuit is worn and more lifts are performed.
View Article and Find Full Text PDFWearable Technol
December 2024
Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG).
View Article and Find Full Text PDFErgonomics
January 2025
DevAH, Université de Lorraine, Nancy, France.
The use of exoskeletons is increasingly considered as a solution to reduce workers' exposure to physical risk factors, such as low-back disorders. The aim of this study was to evaluate the effects of the CORFOR occupational soft-back exoskeleton on trunk muscle activity and kinematics during an order picking manual task performed in the field. 10 workers, with at least 4 weeks' experience using the exoskeleton, performed a 1.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W, Montréal, H3A 0G4, Québec, Canada; Orthopaedic Research Laboratory, Research Institute MUHC, Montreal General Hospital, McGill University, Montréal H3G 1A4, Québec, Canada. Electronic address:
Background: Low back pain is a prevalent global condition often challenging to address due to the absence of a definitive diagnosis in over 80 % of cases. Manual lifting, common in many work environments, contributes to low back pain due to lumbar spine stresses, and existing assistive technologies like abdominal belts and exoskeletons have limitations in managing low back pain effectively. This paper presents a novel back support device designed to generate abdominal compression during flexion activities, potentially enhancing lumbar stability through increased intra-abdominal pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!