Objective: The development of effective anti-obesity therapeutics relies heavily on the ability to target specific brain homeostatic and hedonic mechanisms controlling body weight. To obtain further insight into neurocircuits recruited by anti-obesity drug treatment, the present study aimed to determine whole-brain activation signatures of six different weight-lowering drug classes.
Methods: Chow-fed C57BL/6J mice (n = 8 per group) received acute treatment with lorcaserin (7 mg/kg; i.p.), rimonabant (10 mg/kg; i.p.), bromocriptine (10 mg/kg; i.p.), sibutramine (10 mg/kg; p.o.), semaglutide (0.04 mg/kg; s.c.) or setmelanotide (4 mg/kg; s.c.). Brains were sampled two hours post-dosing and whole-brain neuronal activation patterns were analysed at single-cell resolution using c-Fos immunohistochemistry and automated quantitative three-dimensional (3D) imaging.
Results: The whole-brain analysis comprised 308 atlas-defined mouse brain areas. To enable fast and efficient data mining, a web-based 3D imaging data viewer was developed. All weight-lowering drugs demonstrated brain-wide responses with notable similarities in c-Fos expression signatures. Overlapping c-Fos responses were detected in discrete homeostatic and non-homeostatic feeding centres located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures as well as the dopaminergic system.
Conclusions: Whole-brain c-Fos expression signatures of various weight-lowering drug classes point to a discrete set of brain regions and neurocircuits which could represent key neuroanatomical targets for future anti-obesity therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895844 | PMC |
http://dx.doi.org/10.1016/j.molmet.2021.101171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!