Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways*.

Angew Chem Int Ed Engl

Institute of Chemistry, Department of Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria.

Published: March 2021

Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048449PMC
http://dx.doi.org/10.1002/anie.202100164DOI Listing

Publication Analysis

Top Keywords

light irradiation
8
chromoselective photocatalysis
4
photocatalysis enables
4
enables stereocomplementary
4
stereocomplementary biocatalytic
4
biocatalytic pathways*
4
pathways* controlling
4
controlling selectivity
4
selectivity chemical
4
chemical reaction
4

Similar Publications

Fabrication of hierarchical sapphire nanostructures using ultrafast laser induced morphology change.

Nanotechnology

January 2025

Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.

Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.

View Article and Find Full Text PDF

Polydopamine Nanohydrogel Decorated Adhesive and Responsive Hierarchical Microcarriers for Deafness Protection.

Adv Sci (Weinh)

January 2025

Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Jiangsu Provincial Key Medical Discipline, Nanjing University Medical School, Nanjing, 210008, China.

Cisplatin-induced ototoxicity is attributed to the aberrant accumulation of reactive oxygen species (ROS) within the inner ear. Antioxidants represented by α-lipoic acid (ALA) have been demonstrated to scavenge ROS in the cochlea, while effective delivery of these agents in vivo remains a major challenge. Here, a novel polydopamine (PDA) nanogel decorated adhesive and responsive hierarchical microcarriers for controllable is presented ALA delivery and deafness prevention.

View Article and Find Full Text PDF

Control of metalloenzyme activity using photopharmacophores.

Coord Chem Rev

January 2024

Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States.

Metalloenzymes are responsible for numerous physiological and pathological processes in living organisms; however, there are very few FDA-approved metalloenzyme-targeting therapeutics (only ~ 67 FDA-approved metalloenzyme inhibitors as of 2020, less than ~ 5 % of all FDA-approved therapeutics). Most metalloenzyme inhibitors have been developed to target the catalytic metal centers in metalloenzymes the incorporation of metal-binding groups. Light-controlled inhibition of metalloenzymes has been used as a means to specifically activate and inactivate inhibitor engagement at a desired location and time light irradiation, allowing for precise spatiotemporal control over metalloenzyme activity.

View Article and Find Full Text PDF

A novel metastable-state photoacid for reversible protonation of strong bases.

Chem Commun (Camb)

January 2025

Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida, 32901, USA.

Metastable-state photoacid (mPAH) has become a common tool for controlling and driving chemical processes with light. However, previously developed mPAHs could not be used for reversible protonation of strong bases, including many common amines and heterocycles. In this work, we developed a novel mPAH using benzimidazole as the structural moiety with the active proton.

View Article and Find Full Text PDF

In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!