Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Vitamin E acetate (VEA) has come under significant scrutiny due to its association with E-cigarette or vaping product use-associated lung injury (EVALI). Various theoretical mechanisms have been proposed for toxicity, including tocopherol (vitamin E)-mediated surfactant damage, recruitment of inflammation, and pyrolysis of acetate to the pulmonary irritant ketene.
Objective: Characterize studies in mammals evaluating inhaled VEA, vitamin E analogues, or pyrolyzed acetate that describe subsequent effects on the lung.
Eligibility: Research in all languages from time of inception to October 1, 2020, regarding mammals (human or animal) exposed to inhaled vitamin E analogues, or any compound containing acetate administered via inhalation after pyrolysis, and subsequent description of pulmonary effect.
Sources Of Evidence: Ovid MEDLINE, Scopus, and Web of Science Core Collection.
Results: In total, 786 unique articles were identified. After duplicate reviewer screening, 16 articles were eligible for inclusion. Tocopherol was evaluated in 68.8% (11/16) of the studies, VEA in 18.8% (3/16), and both VEA and tocopherol were evaluated in 12.5% (2/16). Of the five studies evaluating VEA, it was given by pyrolysis in 60.0% (3/5). No human studies were identified. All included trials were conducted on non-human mammals: 75.0% (12/16) rodent models and 25.0% (4/16) sheep models. Outcomes assessed were heterogeneous and included 57 unique outcomes.
Conclusions: Several questions still exist regarding the pulmonary toxicity of inhaled tocopherol and VEA. More studies are needed to determine whether tocopherol alone (i.e., without acetate) can cause pulmonary injury. Additionally, further studies of VEA should evaluate the impact that pyrolysis and co-administration with other compounds, such as tetrahydrocannabinol, have on the toxic potential of VEA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206445 | PMC |
http://dx.doi.org/10.1007/s13181-021-00823-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!