A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 500 Internal Server Error

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dexamethasone-induced intrauterine growth restriction modulates expression of placental vascular growth factors and fetal and placental growth. | LitMetric

Dexamethasone-induced intrauterine growth restriction modulates expression of placental vascular growth factors and fetal and placental growth.

Mol Hum Reprod

Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.

Published: February 2021

AI Article Synopsis

  • Prenatal exposure to glucocorticoids (GCs) is vital for fetal development but can also lead to intrauterine growth retardation (IUGR), as shown by a study using dexamethasone in pregnant mice.
  • In the study, 100% of the offspring in the dexamethasone-treated group exhibited IUGR, with findings indicating decreased maternal weight gain, placental weight, and altered levels of growth-related proteins.
  • The results suggest that excessive prenatal GC exposure negatively affects both fetal growth and placental development, likely due to reduced angiogenesis in the placenta.

Article Abstract

Prenatal exposure to glucocorticoids (GC) is a central topic of interest in medicine since GCs are essential for the maturation of fetal organs and intrauterine growth. Synthetic glucocorticoids, which are used in obstetric practice, exert beneficial effects on the fetus, but have also been reported to lead to intrauterine growth retardation (IUGR). In this study, a model of growth restriction in mice was established through maternal administration of dexamethasone during late gestation. We hypothesised that GC overexposure may adversely affect placental angiogenesis and fetal and placental growth. Female BALB/c mice were randomly assigned to control or dexamethasone treatment, either left to give birth or euthanised on days 15, 16, 17 and 18 of gestation followed by collection of maternal and fetal tissue. The IUGR rate increased to 100% in the dexamethasone group (8 mg/kg body weight on gestational days 14 and 15) and pups had clinical features of symmetrical IUGR at birth. Dexamethasone administration significantly decreased maternal body weight gain and serum corticosterone levels. Moreover, prenatal dexamethasone treatment not only induced fetal growth retardation but also decreased placental weight. In IUGR placentas, VEGFA protein levels and mRNA expression of VEGF receptors were reduced and NOS activity was lower. Maternal dexamethasone administration also reduced placental expression of the GC receptor, αGR. We demonstrated that maternal dexamethasone administration causes fetal and placental growth restriction. Furthermore, we propose that the growth retardation induced by prenatal GC overexposure may be caused, at least partially, by an altered placental angiogenic profile.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gaab006DOI Listing

Publication Analysis

Top Keywords

intrauterine growth
12
growth restriction
12
fetal placental
12
placental growth
12
growth retardation
12
dexamethasone administration
12
growth
10
placental
8
dexamethasone treatment
8
body weight
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!