In order to circumvent the usual nucleation of randomly distributed tiny metallic dots photodeposited on TiO nanoparticles (NPs) induced by conventional UV lamps, we propose to synthesize well-controlled nanoheterodimers (NHDs) using lasers focused inside microfluidic reactors to strongly photoactivate redox reactions of active ions flowing along with nanoparticles in water solution. Since the flux of photons issued from a focused laser may be orders of magnitude higher than that reachable with classical lamps, the production of electron-hole pairs is tremendously increased, ensuring a large availability of carriers for the deposition and favoring the growth of a single metallic dot as compared to secondary nucleation events. We show that the growth of single silver or gold nanodots can be controlled by varying the beam intensity, the concentration of the metallic salt, and the flow velocity inside the microreactor. The confrontation to a build-in model of the metallic nanodot light-induced growth onto the surface of TiO NPs shows the emergence of a predictable "master behavior" on which individual growths obtained from various tested conditions do collapse. We also characterized the associated quantum yield. Eventually, we successfully confronted our model to growth data from the literature in the case of silver on TiO and gold on II-VI semiconducting NPs triggered by UV lamps. It shows that for the photosynthesis of NHDs the efficiency of the electron-hole pair production rate matters much more than the number of pairs produced and that the use of laser light can provide a photodeposition-based synthesis at the nanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c09155 | DOI Listing |
Cancer Cell Int
January 2025
Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.
Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.
Langenbecks Arch Surg
January 2025
Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
Background: There are multiple surgical approaches for treating symptomatic simple renal cysts (SSRCs). The natural orifice transluminal endoscopic surgery (NOTES) approach has gradually been applied as an emerging minimally invasive approach for the treatment of SSRCs. However, there are no clear indicators for selecting the NOTES approach for patients with SSRCs.
View Article and Find Full Text PDFSci Rep
January 2025
Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:
Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!