Recent progress on hydrogel actuators.

J Mater Chem B

Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, P. R. China.

Published: February 2021

AI Article Synopsis

  • Hydrogels are smart materials that can change shape and volume in response to external stimuli, making them useful for creating actuators that mimic natural movements.
  • The article reviews various fabrication techniques for hydrogel actuators, including methods like 3D printing and photolithography, and discusses the pros and cons of each approach.
  • It concludes with insights on future research directions needed to enhance the performance and reliability of hydrogel actuators.

Article Abstract

Hydrogels are known to be soft and wet smart materials that respond to external stimuli. Numerous hydrogel actuators have been developed that perform volume and shape changes, and reversible motions. Heterogeneity, periodicity, and integration of hydrogels with different properties are needed to realize biomimetic motions. In order to achieve specific actuations with predictable pathways, it is critical to fabricate hydrogel structures in a well-controlled manner. This review article summarizes recent progress in representative methods to fabricate hydrogel actuators by different methods, ranging from sequential synthesis, macroscopic supramolecular assembling, field-induced alignment, photolithography, ionoprinting, 3D printing, and gradient structuring. The advantages and limits of these methods are compared and analyzed. Finally, a brief perspective and conclusion are presented to point out some important issues for further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb02524kDOI Listing

Publication Analysis

Top Keywords

hydrogel actuators
12
fabricate hydrogel
8
progress hydrogel
4
actuators hydrogels
4
hydrogels soft
4
soft wet
4
wet smart
4
smart materials
4
materials respond
4
respond external
4

Similar Publications

Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.

View Article and Find Full Text PDF

A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers.

Polymers (Basel)

December 2024

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.

Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.

View Article and Find Full Text PDF

Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.

View Article and Find Full Text PDF

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Four-dimensional printing (4DP) technologies can expand the functionality of stimuli-responsive devices to enable the integration of multiple stimuli-responsive parts into a compact device. Herein, we used digital light processing three-dimensional printing technique, flexible photocurable resins, and photocurable resins of the temperature-responsive hydrogels comprising -isopropylacrylamide (NIPAM), ,'-methylenebis(acrylamide) (MBA), and graphene for 4DP of a lab-on-valve (LOV) solid-phase extraction (SPE) device. This device featured flow manifolds and a monolithic packing connected by four near-infrared (NIR)-actuated temperature-responsive switching valves composed of a poly(NIPAM/MBA) (PNM) ball pushing a flexible membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!