Abnormal fast dehydration and rehydration of light- and thermo-dual-responsive copolymer films of poly(oligo(ethylene glycol) methyl ether methacrylate-co-6-(4-phenylazophenoxy)hexyl acrylate), abbreviated as P(OEGMA300-co-PAHA), are triggered by UV radiation. Both rapid kinetic processes are probed by in situ neutron reflectivity (NR). The transition temperatures (TTs) of P(OEGMA300-co-PAHA) are 53.0 (ambient conditions) and 52.5 °C (UV radiation, λ = 365 nm). Thin P(OEGMA300-co-PAHA) films show a random distribution of OEGMA300 and PAHA segments. They swell in a D2O vapor atmosphere at 23 °C (below TT) to a swelling ratio d/das-prep of 1.61 ± 0.01 and exhibit a D2O volume fraction φ(D2O) of 39.3 ± 0.5%. After being exposed to UV radiation for only 60 s, d/das-prep and φ(D2O) significantly decrease to 1.00 ± 0.01 and 13.4 ± 0.5%, respectively. Although the UV-induced trans-cis isomerization of the azobenzene in PAHA induces increased hydrophilicity, the configuration change causes a breaking of the intermolecular hydrogen bonds between OEGMA300 and D2O molecules and unexpected film shrinkage. As compared to thermal stimulus-induced dehydration, the present dehydration rate is 100 times faster. Removal of the UV radiation causes immediate rehydration. After 200 s, d/das-prep and φ(D2O) recover to their hydrated states, which is also 30 times faster than the initial hydration. At 60 °C (above TT), thin P(OEGMA300-co-PAHA) films switch to their collapsed state and are insensitive to UV radiation. Thus, the UV-induced fast dehydration and rehydration depend on the existence of hydrogen bonds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0sm02007a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!