Background: Wolfram Syndrome is a very rare genetic disease causing diabetes mellitus, blindness, deafness, diabetes insipidus, and progressive brainstem degeneration. Neurologic symptoms of affected patients include ataxia, sleep apnea, loss of bladder control, dysphagia, loss of taste, and accompanying psychiatric symptoms as a sign of progressive neurodegeneration. Its genetic cause is mainly biallelic mutations of the Wolframin endoplasmatic reticulum transmembrane glycoprotein gene Wfs1. These result in increased ER stress, which in turn induces apoptosis and leads to the depletion of the corresponding cells and a loss of their physiological functions. Though diabetes mellitus is mostly treated by insulin, there is still no proven cure for the disease in general. It leads to premature death in affected individuals-usually within the 4th decade of live.

Current Research And Treatment Trials: Clinical studies are currently being conducted at various locations worldwide to test a therapy for the disease using various approaches.

Potentail Of Virtual Netowrking: As rare diseases in general represent a major challenge for individual clinicians and researchers due to the rarity of diagnosis, the lack of evidence and of value of existing research, international cooperation, coordination and networking leading to an alignment of different stakeholders is necessary to support patients and increase knowledge about these diseases, like wolfram syndrome.

Conclusion: ENDO-ERN and EURRECA are two EU-funded networks that aim to promote knowledge sharing, education and research on rare endocrine diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-021-02622-3DOI Listing

Publication Analysis

Top Keywords

wolfram syndrome
8
diabetes mellitus
8
collaboration rare
4
diabetes
4
rare diabetes
4
diabetes understanding
4
understanding treatment
4
treatment options
4
options wolfram
4
syndrome background
4

Similar Publications

-spectrum disorders are caused by a mutation in the gene. The term includes a wide range of rare disorders, from the most severe Wolfram syndrome with autosomal recessive inheritance to milder clinical manifestations with a single causative variant in the gene, such as Wolfram-like syndrome, low-frequency sensorineural hearing loss (LFSNHL), isolated diabetes mellitus (DM), nonsyndromic optic atrophy (OA), and isolated congenital cataracts. The aim of this study was to evaluate genotype-phenotype correlations in Polish patients with -spectrum disorders.

View Article and Find Full Text PDF

Cochlear implant in Wolfram syndrome: A case report.

Cochlear Implants Int

December 2024

Department of ENT and Head & Neck Surgery, Seth GS Medical College & K.E.M. Hospital, Mumbai, India.

Introduction: Wolfram syndrome, a rare autosomal recessive disorder, is characterised by diabetes insipidus, juvenile diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD).

Case Report: We present a case of a 21-year-old male diagnosed with Wolfram syndrome who underwent cochlear implantation due to progressive hearing loss. The patient first complained of bilateral hearing loss at the age of 8 years.

View Article and Find Full Text PDF

Foecal incontinence disorders in Wolfram syndrome: a new manifestation.

J Med Genet

December 2024

Functional Unity of Ophthalmology, ERN Eye, Ophthalmological Rare Diseases Center, Georges Pompidou European Hospital, Paris, France

View Article and Find Full Text PDF

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident secretory protein that reduces inflammation and promotes proliferation in pancreatic β cells. Numerous studies have highlighted the potential of MANF as a therapeutic agent for diabetes mellitus (DM), making it essential to understand the mechanisms underlying MANF's functions. In our previous search for a molecule that mediates MANF signaling, we identified Neuroplastin (NPTN) as a binding partner of MANF that localizes on the cell surface.

View Article and Find Full Text PDF

Early trigeminal and sensory impairment and lysosomal dysfunction in accurate models of Wolfram syndrome.

Exp Neurol

December 2024

Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia. Electronic address:

Wolfram syndrome (WS) is a rare condition caused by homozygous or compound heterozygous mutations in the WFS1 gene primarily. It is diagnosed on the basis of early-onset diabetes mellitus and optic nerve atrophy. Patients complain of trigeminal-like migraines and show deficits in vibration sensation, but the underlying cause is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!