A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green. | LitMetric

The wide use of malachite green (MG) as a dye has caused substantial concern owing to its toxicity. Bacillus cereus can against the toxic effect of MG and efficiently decolourise it. However, detailed information regarding its underlying adaptation and degradation mechanisms based on proteomic data is scarce. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ)-facilitated quantitative method was applied to analyse the molecular mechanisms by which B. cereus degrades MG. Based on this analysis, 209 upregulated proteins and 198 downregulated proteins were identified with a false discovery rate of 1% or less during MG biodegradation. Gene ontology and KEGG analysis determined that the differentially expressed proteins were enriched in metabolic processes, catalytic activity, antioxidant activity, and responses to stimuli. Furthermore, real-time qPCR was utilised to further confirm the regulated proteins involved in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase), BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651 (Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA dehydrogenase) involved in the benzoate degradation pathway may play an important role in the biodegradation of MG by B. cereus. The results of this study not only provide a comprehensive view of proteomic changes in B. cereus upon MG loading but also shed light on the mechanism underlying MG biodegradation by B. cereus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-021-0441-0DOI Listing

Publication Analysis

Top Keywords

bacillus cereus
8
malachite green
8
involved benzoate
8
benzoate degradation
8
acetyl-coa acetyltransferase
8
3-hydroxyacyl-coa dehydrogenase
8
biodegradation cereus
8
cereus
6
proteins
5
itraq-facilitated proteomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!