New enzyme catalysts are usually engineered by repurposing the active sites of natural proteins. Here we show that design and directed evolution can be used to transform a non-natural, functionally naive zinc-binding protein into a highly active catalyst for an abiological hetero-Diels-Alder reaction. The artificial metalloenzyme achieves >10 turnovers per active site, exerts absolute control over reaction pathway and product stereochemistry, and displays a catalytic proficiency (1/K = 2.9 × 10 M) that exceeds all previously characterized Diels-Alderases. These properties capitalize on effective Lewis acid catalysis, a chemical strategy for accelerating Diels-Alder reactions common in the laboratory but so far unknown in nature. Extension of this approach to other metal ions and other de novo scaffolds may propel the design field in exciting new directions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-020-00628-4DOI Listing

Publication Analysis

Top Keywords

lewis acid
8
acid catalysis
8
efficient lewis
4
catalysis abiological
4
abiological reaction
4
reaction novo
4
novo protein
4
protein scaffold
4
scaffold enzyme
4
enzyme catalysts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!