Chimeric antigen receptor (CAR) T cell technology has enabled successfully novel concepts to treat cancer patients, with substantial remission rates in lymphoid malignancies. This cell therapy is based on autologous T lymphocytes that are genetically modified to express a CAR that recognizes tumor-associated antigens and mediates the elimination of the respective tumor cells. Current limitations include laborious manufacturing procedures as well as severe immunological side effects upon administration of CAR T cells. To address these limitations, we integrated RQR8, a multi-epitope molecule harboring a CD34 epitope and two CD20 mimotopes, alongside a CD19-targeting CAR, into the CD52 locus. Using CRISPR-Cas9 and adeno-associated virus-based donor vectors, some 60% of genome-edited T cells were CAR/CD20/CD34/CD52 without further selection. This could be increased to >95% purity after CD34 tag-based positive selection. These epitope-switched CAR T cells retained cell killing competence against CD19 tumor cells, and were resistant to alemtuzumab (anti-CD52) but sensitive to rituximab (anti-CD20) in complement-dependent cytotoxicity assays. In conclusion, gene editing-based multiple epitope switching represents a promising development with the potential to improve both the manufacturing procedure as well as the clinical safety of CAR T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455323 | PMC |
http://dx.doi.org/10.1038/s41434-021-00220-6 | DOI Listing |
Immune deficits after CD19 chimeric antigen receptor (CAR) T-cell therapy can be long-lasting, predisposing patients to infections and non-relapse mortality. In B-cell non-Hodgkin lymphoma (B-NHL), the prognostic impact of immune reconstitution (IR) remains ill-defined, and detailed cross-product comparisons have not been performed to date. In this retrospective observational study, we longitudinally characterized lymphocyte subsets and immunoglobulin levels in 105 B-NHL patients to assess patterns of immune recovery arising after CD19 CAR-T.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Italy.
Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFJ Transl Med
January 2025
Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Division of Nephrology and Hypertension, Rochester, MN, USA.
Background And Hypothesis: Teclistamab, a novel bispecific monoclonal antibody targeting CD3 and B-cell maturation antigen (BCMA), and chimeric antigen receptor T-cell (CAR-T) therapy are promising options for treating relapsed/refractory multiple myeloma (MM). However, the rates of acute kidney injury (AKI) associated with teclistamab remain inadequately characterized. This study aims to compare the incidence, severity, and outcomes of AKI between patients receiving teclistamab and CAR-T therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!