The M 8.8 Maule earthquake is the largest well-recorded megathrust earthquake reported in South America. It is known to have had very few foreshocks due to its locking degree, and a strong aftershock activity. We analyze seismic activity in the area of the 27 February 2010, M 8.8 Maule earthquake at different time scales from 2000 to 2019. We differentiate the seismicity located inside the coseismic rupture zone of the main shock from that located in the areas surrounding the rupture zone. Using an original spatial and temporal method of seismic comparison, we find that after a period of seismic activity, the rupture zone at the plate interface experienced a long-term seismic quiescence before the main shock. Furthermore, a few days before the main shock, a set of seismic bursts of foreshocks located within the highest coseismic displacement area is observed. We show that after the main shock, the seismic rate decelerates during a period of 3 years, until reaching its initial interseismic value. We conclude that this megathrust earthquake is the consequence of various preparation stages increasing the locking degree at the plate interface and following an irregular pattern of seismic activity at large and short time scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851146 | PMC |
http://dx.doi.org/10.1038/s41598-021-82152-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!