Increased sialylation is one of the hallmarks of ovarian cancer (OC) but its relation with programmed cell death is not known. Here we explored the molecular interplay between autophagy, apoptosis/anoikis, and aberrant-expression of the PI3K-Akt/mTOR pathway in the context of sialidase. OC is accompanied by low expression of cytosolic sialidase (Neu2) and ~10-fold more α2,6- than α2,3-linked sialic acids found through qPCR, western blot, and flow cytometry. Interestingly, Neu2 overexpression cleaved α2,6- and α2,3-linked sialic acids and reduced cell viability. Several autophagy-related molecules like LC3B/Atg3/Atg5/Atg7/Atg12/Atg16L1/Beclin1 were upregulated upon Neu2 overexpression. Atg5, a crucial protein for autophagosome formation, was desialylated by overexpressed Neu2. Desialylated Atg5 now showed enhanced association both with Atg12 and Atg16L1 leading to more autophagosome formation. Neu2-overexpressing cells exhibited extrinsic pathway-mediated apoptosis as reflected the in activation of Fas/FasL/FADD/Bid/caspase 8/caspase 6/caspase 3/PARP cleavage. There was also increased Bax, reduced Bcl2, and several cell-cycle molecules (CDK2/CDK4/CDK6/cyclin-B1/cyclin-E). Inhibition of autophagy using bafilomycin A1 or Beclin1 siRNA leads to reversal of Neu2-induced apoptosis suggesting their possible relationship. Additionally, overexpressed Neu2 inhibited growth factor-mediated signaling molecules involved in the PI3K/Akt-mTOR pathway probably through their desialylation. Furthermore, overexpressed Neu2 inhibited epithelial (ZO-1/Claudin1), mesenchymal (snail/slug), and cell-adhesion (integrin-β3/focal-adhesion kinase) molecules suggesting anchorage-dependent cell death (anoikis). Such changes were absent in the presence of bafilomycin A1 indicating the involvement of autophagy in Neu2-induced anoikis. The physiological relevance of our in vitro observations was further confirmed in the OC xenograft model. Taken together, it is the first report demonstrating that Atg5 is a sialoglycoprotein having α2,6- and α2,3-linked sialic acids and its desialylation by overexpressed Neu2 leads to its activation for autophagosome formation, which induced apoptosis/anoikis in OC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851153 | PMC |
http://dx.doi.org/10.1038/s41420-020-00391-y | DOI Listing |
PLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
ACS Nano
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University Urumqi Xinjiang China.
a member of the family, is known for its diverse biological activities, including anti-inflammatory properties. The mechanisms through which polysaccharide (LTP) induces autophagy, however, remain largely unexplored. This study aims to elucidate the role of LTP in autophagy induction and its efficacy in mitigating inflammation within macrophages.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
University Cote d'Azur, Inserm, C3M, Nice, France.
Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!